
ED 120 027

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

PUB DATE
GPANT
NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

SE 020 689

Lesh, Richard A., Ed.; Bradbard, David A., Ed.
Number and Measurement. Papers from a Research
Workshop.
ERIC Information Analysis Center for Science,
Mathematics, and Environmental Education, Columbus,
Ohio.; Georgia Univ., Athens. Georgia Center for the
Study of Learning and Teaching Mathematics.
National Inst. of Education (DHEW), Washington', D.C.;
National Science Foundation, Washington, D.C.
(Apr 76]
PES-7418491
238p.
Information Reference Center (ERIC/IRC), The Ohio
State University, 1200 Chambers Road, 3rd Floor,
Columbus, Ohio 43212 ($4.00)

MF-$0.83 HC-$12.71 Plus Postage
Cognitive Development; Elementary School Mathematics;
Elementary Secondary Education; Instruction;
*Mathematics Education; *Measurement; *Number
Concepts; Number Systems; *Research; *Research
Reviews (Publications); Secondary School
Mathematics

ABSTRACT
Seven papers presented at a research conference on

number and measurement are presented in this volume. The first paper
provides an overview of research concerning number and measurement,
and suggests directions for future research. The second paper
discusses the relationships between measurement and number concepts,
and psychological and instructional issues related to transfer. Two
papers are devoted to synthesizing and analyzing research on
measurement, and the delineation of questions about which research is
needed. Two papers concern fractions; the first of these analyzes the
foundations of the rational numbers from mathematical, cognitive, and
instructional points of view, while the second reviews and
synthesizes educational research related to fractions. The final
paper concerns children's development of cardinal and ordinal number
concepts. (SD)

***********************************************************************
Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hard.7opy reproduct:ons ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDES are the best that can be made from the original.
***********************************************************************



u.
co

0
0

U S DEPARTMENT OF HEALTH
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

tHI5 DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

ber

sur

2



NUMBER

AND

MEASUREMENT

Papers from a Research Workshop

Sponsored by The Georgia Center
for the Study of Learning and
Teaching Mathematics
and the
Department of Mathematics Education
University of Georgia
Athens, Georgia

3ichard A. Lesh, Editor
David A. Bradbard, Technical Editor

3



These papers were prepared as part of the activities of the Georgia
Center for the Study of Learning and Teaching Mathematics, under
Grant No. PES 7418491, National Science Foundation. The opinions
expressed herein do not necessarily reflect the position or policy
of the National Science Foundation.

This publication was prepared pursuant to a contract with the National
Institute of Education, U.S. Department of Health, Education and Welfare.
Contractors undertaking such projects under Government sponsorship
are encouraged to express freely theL:' judgment in professional
and technical matters. Points of view or opinions do not, therefore,
necessarily represent official National Institute of Education position
or policy.

4



MATHEMATICS EDUCATION REPORTS

The Mathematics Education Reports series makes available recent

analyses and syntheses of research and development efforts in mathematics

education. We are pleased to make available as part of this series the

papers from the Workshop on Number and Measurement Concepts sponsored

by the Georgia Center for the Study of Learning and Teaching Mathematics.

Other Mathematics Education Reports make available information

concerning mathematics education documents analyzed at the ERIC

Information Analysis Center for Science, Mathematics, and Environmental

Education. These reports fall into three brbad categories. Research

reviews summarize and analyze recent research in specific areas of

mathematics education. Resource guides identify and analyze materials

and references for use by mathematics teachers at all levels. Special

bibliographies announce the availability of documents and review the

literature in selected interest areas of mathematics education. Reports

in each of these categories may also be targeted for specific sub-

populations of the mathematics education community.

Priorities for the development of future Mathematics Education Reports

are established by the advisory board L" the Center, in cooperation with

the National Council of Teachers of Mathematics, the Special Interest

Group for Research in Mathematics Education, and other professional

groups in mathematics education. Individual comments on past Reports and

suggestions for future Reports are always welcomed by the ERIC/SMEAC Center.

Jon L. Higgins
Associate Director
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Acknowledgements and Overview

The Georgia Center for the Study of Learning and Teaching Mathematics
(GCSLTM) was started July 1, 1975, through a founding grant from the

National Science Foundation. Various activities preceded the founding

of the GCSLTM. The most significant was a conference held at Columbia
University in October of 1970 on Piagetian Cognitive-Development and
Mathematical Education. This conference was directed by the late Myron
F. Rosskopf and jointly sponsored by the National Council of Teachers of

Mathematics and the -.apartment of Mathematical Education, Teachers
College, Columbia University with a grant from the National Science

Foundation. Following the October 1970 Conference, Professor Rosskopf
spent the winter and spring quarters of 1971 as a visiting professor of

Mathematics Education at the University of Georgia. During these two

quarters, the editorial work was accomplished, on the proceedings of the

October conference and a Letter of Intent was filed in February of 1971
with the National Science Foundation to create a Center for Mathematical

Education Research and Innovation. Professor Rosskopf's illness and
untimely death made it impossible for him to develop the ideas contained

in that Letter.

After much discussion among faculty in the Department of Mathematics

Education at the University of Georgia, it was clear that a center devoted

to the study of mathematics education ought to attack a broader range of

problems than was stated in the Letter of Intent. As a result of these

discussions, three areas of study were identified as being of primary
interest in the initial year of the Georgia Center for the Study of

Learning and Teaching Mathematics--Teaching Strategies, Concept Develop-
ment, and Problem Solving. Thomas J. Cooney assumed directorship of the

Teaching Strategies Project, Leslie P. Steffe the Concept Development
Project, and Larry L. Hatfield the Problem Solving Project.

The GCSLTM is intended to be a long-term operation with the broad

goal of improving mathematics education in elementary and secondary schools.

To be effective, it was felt that the Center would have to include
mathematics educators with interests commensurate with those of the

project areas. Alternative organizational patterns were available- -
resident scholars, institutional consortia, or individual consortia.
The latter organizational pattern was chosen because it was felt maximum

participation would be then possible. In order to operationalize a

concept of a consortia of individuals, five research workshops were held

during the spring of 1975 at the University of Georgia. These workshops

were (ordered by dates held) Teaching Strategies, Number and Measurement

Concepts, Space and Geometry Concepts, Models for Learning Mathematics,

vii



and Problem Solving. Papers were commissioned for each workshop. It
was necessary to commission papers for two reasons. First, current
analyses and syntheses of the knowledge in the particular areas chosen
for investigation were needed. Second, a catalyst for further research
and development activities were needed--major problems had to be
identified in the project areas on which work was needed.

Twelve working groups have emerged from these workshops, three in
Teaching Strategies, five in Concept Development, and four in Problem
Solving. The three working groups in Teaching Strategies are: Differential
Effects of Varying Teaching Strategies, John Dossey, Coordinator;
Development of Protocol Materials to Depict Moves and Strategies, Kenneth
Retzer, Coordinator; and Investigation of Certain Teacher Behavior That
May Be Associated with Effective Teaching, Thomas J. Cooney, Coordinator.
The five working groups in Concept Development are: Measurement Concepts,
Thomas Romberg, Coordinator; Rational Number Concepts, Thomas Kieren,
Coordinator; Cardinal and Ordinal Number Concepts, Leslie P. Steffe,
Coordinator; Space and Geometry Concepts, Richard Lesh, Coordinator; and
Models for Learning Mathematics, William Geeslin, Coordinator. The
four working groups in Problem Solving are: Instruction in the Use of
Key Organizers (Single Heuristics), Frank Lester, Coordinator; Instruction
Organized to use Heuristics in Combinations, Phillip Smith, Coordinator;
Instruction in Problem Solving Strategies, Douglas Grouws, Coordinator;
and Task Variables for Problem Solving Research, Gerald Kulm, Coordinator.
The twelve working groups are working as units somewhat independently
of one another. As research and development emerges from working groups,
it is envisioned that some working groups will merge naturally.

The publication program of the Center is of central importance to
Center activities. Research and development monographs and school mono-
graphs will be issued, when appropriate, by each working group. The
school monographs will be written in nontechnical language and are to be
aimed at teacher educators and school personnel. Reports of single
studies may be also published as technical reports.

All of the above plans and aspirations would not be possible if it
were not for the existence of professional mathematics educators with
the expertise in and commitment to research and development in mathematics
education. The professional commitment of mathematics educators to the
betterment of mathematics education in the schools has been vastly under-
estimated. In fact, the basic premise on which the GCSLTM is predicated
is that there are a significant number of professional mathematics
educators rith a great deal of individual commitment to creative scholar-
ship. The , is no attempt on the part of the Center to buy this scholar-
ship--only to stimulate it and provide a setting in which it can flourish.

viii
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The Center administration wishes to thank the individuals who wrote
the excellent papers for the workshops, the participants who made the work-
shops possible, and the National Science Foundation for supporting
financially the first year of Center operation. Various individuals have
provided valuable assistance in prepa7ing the papers given at the workshops
for publication. Mr. David Bradbard vrovided technical editorship; Mrs.
Julie Wetherbee, Mrs. Elizabeth Platt, Mrs. Kay Abney, and Mrs. Cheryl
Hirstein, proved to be able typists; and Mr. Robert Petty drafted the
figures. Mrs. Julie Wetherbee also provided expertise in the daily
operation of the Center during its first year. One can only feel grateful
for the existence of such capable and hardworking people.

Thomas J. Cooney Leslie P. Steffe Larry L. Hatfield
Director Director Director
Teaching Strategies Concept Development Problem Solving

and
Director, GCSLTM

ix
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Directions for Research Concerning Number and Measurement Concepts

Richard Leah

Northwestern University

In the Spring quarter of 1975, under a grant from the National
Science Foundation, the Georgia Center for the Study of Learning and
Teaching in Mathematics (GCSLTM) sponsored a series of five research
workshops in mathematics education. The workshops were each three to
four days in length and the topics considered were: (a) teaching strate-

gies in mathematics, (b) number and measurement concepts, (c) space and
geometry concepts, (d) models for learning mathematical concepts, and
(e) problem solving. This monograph contains the papers that were
presented at the number and measurement workshop.

The purpose of these remarks is to mention some of the ideas,
opinions, and unifying themes that arose during discussion sessions at
the workshop but which are not explicitly mentioned in the papers included
in this monograph. The remarks are separated into two parts. The
first has to do with the general milieu in which research is conducted.
The second has to do with specific trends concerning research about
the acquisition of number and measurement concepts.

The General Climate for Future Research

Before mentioning some specific themes concerning directions for
future research on the acquisition of number concepts and measurement
concepts, it seems appropriate to mention some general trends that
affect the general climate in which this research is conducted.

The Scarcity of Funds for Mathematics Education Research

Because of their complexity, most of the really important problems
in mathematics education require long-term commitments and coordinated
research efforts from many individuals. Yet, coordinated research
efforts usually occur within large funded projects. A basic problem
which confronts the profession of mathematics education is to operationalize
coordinated research efforts with minimal funding from federal or private
agencies.

Actually, a large portion of the research that is done in mathematics
education is conducted either by (a) doctoral students As dissertations,
or (b) individuals working at institutions where there are few colleagues
to "bounce ideas off of," and where there are few funded projects. So,

10
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some questions that should be considered are: "How can these research
efforts be guided and coordinated so that steps can be taken toward
finding answers to some of the more complex and important problems in
mathematics education?" "When minimum funds are available, how can we
avoid having unqualified people making major decisions about directions
for future research?" "How can projects be funded without being forced
to work under artificial accountability procedures that doom them to
failure before they begin?"

Several aspects of the workshops sponsored by the GCSLTM were parti-
cularly pleasing to participants because they offered alternative solu-
tions to several of the problems presented by shortages in research funds.
Rather than deciding ahead of time what research questions ought to be
investigated and then parceling out subprojects to individual researchers,
or attempting to buy research through salaries paidto individual
researchers, the GCSLTM identified several research areas that are
particularly important and then brought together people who already were
doing research in these areas. In this way, people who are most know-
ledgeable about an area can decide for themselves the directions that
their own future research efforts should take. Furthermore, the project
can capitalize on what has already been done rather than attempting to
"reinvent the wheel" in a given research area.

During times when funds are scarce, more thought needs to be given
to ways of capitalizing on resources that are already available. In
mathematics education, this means considering ways to amplify the
effectiveness of people who do research on a regular basis--often without
outside research funding. There is a big difference between: (a)
spending money to buy research, and (b) spending money to promote cooper-
ation and facilitate communication among people who are already actively
involved in research--often without any form of monetary support. The
Georgia workshops elected to focus on the latter type of objectives. In
this way, it was possible to stimulate research in an area by providing
encouragement for more people to work in that areas and it was possible
to influence the direction research will take without stifling the
initiative of researchers who are most knowledgeable and most committed
to research in the area. Furthermore, the final directions that research
efforts will take is determined cooperatively by (a) individual researchers,
(b) a group of researchers acting collectively, and (c) the funding agency- -
with none of these forces dominating the others.

When experienced researchers work together for several days to iso-
late individual research projects, the chances increase that the projects
that evolve will be more basic, more to the heart of the issues, and
consequently more importadt. Furthermore, because many individuals will
have input into the planning, and because many individuals will have an
opportunity to coordinate their research efforts, more complex issues can
be investigated. The optimal time to establish connections among indi-
vidual research efforts is while project plans are in the formative
stages of development--not a year or two after projects have been com-
pleted and reports finally appear in journals or at conferences.
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Communication Problems

One of the most disconcerting facts about mathematics education
research is that, for most topics like the ones considered at the number
and measurement workshop, a great deal of information has been accum"lated
and yet very little is known. Part of the difficulty stems from the
apparent unwillingness of mathematics educators to take the time to
seriously investigate the psychological literature available to determine
its applicability to the learning of mathematics. While such investiga-
tion is difficult, time consuming, and at times unrewarding, it can
contribute immeasurably in two ways. First, psychology offers one point
of departure for understanding mathematical learning. It may offer struc-
ture to problems heretofore unstructured and methods of research not
commonly used in mathematics education. Second, the psychological
literature itself can be evaluated concerning its applicability to the
problems confronting mathematics education. For example, terminology of
a mathematical nature--"topology," "quantity," "number"--have meanings
in mathematics different than meanings in psychology. Consequently,
deciphering the mathematical meaning of mathematical-like terminology
psychologists use is crucial for a correct interpretation of their work
as it relates to the acquisition of mathematical concepts.

For example, at the workshop on number and measurement concepts,
it was found that Brainerd used mathematical language in a way that
did not correspond to the usage of mathematicians. While this does not
lessen the importance of Brainerd's excellent work, mathematicians must
be alert to the differences in terminological usage and not generalize
the research results unwarrantedly to their own conceptual referents.

Psychological theory other than Brainerd's (Piaget's) is available
concerning the development of primitive number concepts in children.
But Brainerd apparently does not ascribe to Piaget's developmental
theories concerning number. The disagreement appears to be based more
on assumptions about the mathematical foundation of number than on cognition.
Consequently, it is critical that the mathematics educator look carefully
at the psychologists' mathematics in order to understand his psychology.
A few days of discussion with well-informed colleagues can do a great
deal to broaden the knowledge base for individual researchers. Some of
the information that evolves from such personal interaction can evolve
in no other way. The research workshop on number and measurement provided
a forum for discussion of terminological difference and heightened the
participants' awareness of such differences.

The research workshop also provided a rare setting in which to share
Laccessible references and results of ongoing work. Accessibility of
information can be just as much a roadblock to effective communication
as terminological problems. Ideas that are published only in obscure or
unobtainable journals (e.g., Soviet research) were shared, and opinions
were traded that were based on data from ongoing research projects, pre-
liminary pilot studies, or studies that were partial failures. Further-
more, participants become familiar with projects that were unpublished
or projects that were in the formative stages of development. Participants
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also came in contact with relevant research that had been overlooked
during months of preliminary library work (e.g., a recent book by Bryant
dealing with the acquisition of early number concepts titled Percention
and Understanding in Young Children (1974) was unfamiliar to many parti-
cipants). Furthermore, because the participants came from mathematics,
matheMatics education, and psychology, communication problems were, in
some cases, ironed out "on the spot."

Certainly, if progress is ever to be made on many of the most com-
plex issues that are most important to mathematics educators, groups of
researchers will have to deVelop better bases of communication so that
individuals can profit by (and build on) the work of others. At the pre-
sent time, coordinating research efforts that are already being made (or
that have already been made) is at least as important as attempting to
generate more information. The next section of this paper will discuss
some "levers" that could be used to influence the direction research will
take in particular areas. Agaih the emphasis will be away from buying
research and toward stimulating, focusing, and coordinating research
efforts that are already being made.

The Tight'Job Market

Compared with some "years of plenty" in the recent past, the job
market will probably remain tight in mathematics education as well as
in mathematics. Among the problems that arise in conjunction with a
tight job market, the following seem relevant to mention here.

1. The job market is even tighter in mathematics than mathematics
education, and it has been tight for a longer period of time. Consequently,
many research mathematicians are taking jobs in smaller and less well-known
institutions where they are often confronted by educational problems
rather than mathematical problems. Sometimes, this means that an
excellent mathematical scholar may direct his efforts towards educational-
issues. It is appropriate to mention that such people can benefit
greatly from mathematics education research conferences. Such conferences
are quite common in mathematics, but (except for rare exceptions such as
the Georgia workshops) are almost nonexistent in mathematics education.)

1
Research sessions at meetings of the National Council of Teachers of

Mathematics or the American Education Research Association simply do not
serve the same function as research workshops and conferences. In a
research conference, it is usually assumed that the participants are already
knowledgeable about the subject of the conference, and that their interests
are in coordinating research, in forming generalizations, in discussing

13
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2. Many well-trained mathematics educators who would like to become
involved in research projects are now working at smaller institutions where
(a) a tradition of research has not been established, (b) research facili-
ties (computers, consultants, etc.) are not available, (c) colleagues
are not available, and (d) graduate assistants and doctoral students are
not available. Nonetheless, mathematics educators in this category have
produced a significant quantity of research in recent years. Part of the
reason for this fact is that, because of the tight job market, many in-
stitutions are making demands on their faculty that would have been un-
realistic a few years ago. A "publish or perish" criterion is now being
applied even in nonresearch institutions which provide little other than
threats (concerning salary, promotion, and tenure) to encourage research
activities on the part of their faculty.

3. For mathematics educators who work in mathematics departments,
"to publish" is sometimes interpreted as "to publish research," and this
is so in spite of the fact that mathematics educators are frequently saddled
with excessive teaching (supervising and advising) loads and little
monetary support for scholarly activities (e.g., travel funds to attend
conferences, typing costs, computer time costs, publication costs, etc.).
Consequently, even though this "push to publish" phenomenon may be unjust,
it is a fact of life for many mathematics educators. Nonetheless, rather
amazingly, a significant number of mathematics educators are doing some
interesting work under these highly adverse conditions.

4. Even at major institutions where research has been a tradition,
the tight job market and the scarcity of research funds are having serious
effects. Fewer funds are available for all sorts of scholarly activities,
and far fewer temporary "soft money" persons are available. Furthermore,
.eacling loads are increasing as hard money positions evaporate in the
wake of declining enrollments in schools of education.

5. Mathematics education professors are becoming far less mobile than
in the past. That is, once having reached the rank of associate professor
or full professor, it is very difficult to get a job at another institution.
Almost all new faculty positions are at the assistant professor level.
So, most institutions are faced with a stable and permanent faculty with
far fewer opportunities for an influx of new people with new ideas. Con-
sequently, it has become important for major institutions to provide
opportunities for its faculty to confront new ideas and new colleagues,

data, or in determining directions for future research. The goal is not
simply to disseminate conclusions to prospective consumers of research
information.

Certainly, one objective of mathematics education research should be
to indicate implications for consumers, but this should not be the only
objective. In fact, because of the complexity of the issues that arise
in mathematics education, few isolated studies will ever produce results
that yield definitive generalizations about most of the really important
issues that concern teachers. If overtly simplistic answers are to be
avoided, most issues will require intensive study by various inidviduals.

14
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and for faculty members to continually. reeducate themselves to "keep
fresh" and remain on the forefront of knowledge in their fields. Unfor-
tunately, however, sabbaticals and other policies that used to be aimed
at providing for the educational needs of professors, are becoming things
of the past in most institutions. Furthermore, this is happening at a
time when university salaries are so low that few professors can afford
to provide for their own released time, travel funds, publication costs,
etc. Nonetheless, funding agencies seem to have given little thought to
ways of using these needs as "levers" to influence and coordinate the
research activities of mathematics educators or their doctoral student
advisees.

Of the main types of individuals mentioned above (i4e., mathematicians
who become interested in educational issues, psychologists who become
interested in the acquisition of mathematical concepts, mathematics edu-
cators at smaller institutions, and mathematics educators at major uni-
versities), all are in need of research workshops, conferences, and seminars
where they can reeducate themselves by exchanging ideas with colleagues
from other disciplines and other institutions, and where they can develop
better bases of communication about important topics.2 Consequently,
these "needs" can be used as "levers" to coordinate and focus research con-
cerning topics that are judged to be particularly important.

Graduate students in mathematics education could also benefit greatly
from intra-institutional cooperative research efforts. As mathematics
education departments decrease in size at most major institutions, and
as the influx of new (short-term or soft money) faculty decreases, it
will become more difficult for Ph.D. students to become involved in a
variety of different types of projects. Furthermore, this will happen
at a time when the tight job market will force serious doctoral students
to develop stronger credentials at the pre-Ph.D. level. Consequently,
serious doctoral students will give greater consideration to becoming

involved in pre-dissertation research and development protects. Pre-
dissertation research has been typical for years in mathematids and in
psychology, and it seems likely that professional activities of a variety
of different types will become increasingly important at the pre-Ph.D.
level in mathematics education. But again, this will mean that doctoral
students and their advisers must have access to intra-institutional
cooperative research and development projects.

2 General information centers, like ERIC do not serve the functions
indicated here. Smaller information centers focused on specific types
of topics are needed. For smaller communication centers, the goal
is to be able to bring individuals together who want to do research in
particular areas.
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Another type of service that could be very helpful to college and
university educators is to provide more and different types of publication
outlets. For example, the Journal for Research in Mathematics Education
(JRME) is one of the few research outlets for mathematics educators, and
JRME only comes out four times per year with about six articles per
issue. The flood of articles submitted has produced time lags of
several years between the time that many articles are submitted and the
time of publication.

The participants at the number and measurement workshop were pleased
that during the year following the workshop the GCSLTM intends to publish
a "number and measurement" research monograph including research reports
and related papers written by Center affiliates. Furthermore, mono-
graphs (analogous to this one) aie also being published for each of the
other workshops. Publication in the monographs of the Center does not
preclude submitting the article to other journals. In fact, publication
in other journals is encouraged.

The potential productivity of the Georgia Center is encouraging. By

using a relatively small grant from the National Science Foundatica, and
by capitalizing on the many resources that are already available in mathe-
matics education, the Georgia Center will have (a) held five research
workshops in the Spring of 1975, (b) produced five monographs from the
1975 workshops with each monograph providing directions for research
concerning those topics that were selected for special attention, (c)
held eight two-day workshops (e.g., number and measurement concepts, space
and geometry concepts, teaching strategies, and problem solving) prior to
the 1976 annual NCTM meeting in Atlanta, (d) produced research monographs
reporting work growing out of the 1975 workshops, and (e) throughout the
1975-76 academic year, attempted to facilitate communication and promote
cooperation among project associates.

Using grant money to focus and coordinate resources that are already
available is a simple, sensible, and powerful idea. Speaking for many
participants who benefited greatly from the number and measurement work-
shop (or from one of the other workshops), I hope that the Georgia Center
will continue its work in future years, and that similar projects may be
created at other institutions. There is no reason why the basic "modus
operandi" of the Georgia Center cannot also be applied to curriculum
development projects as well as research oriented projects.

One idea that is not an aspect of the Georgia Center, but which could
be considered in future years (or by other projects), would be to provide
some small amounts of money for unusual research experiences incurred by
project associates. For example, in most major research institutions, there
are research funds available for graduate students or for junior faculty
members which can be used for minor expenses (e.g., $100-$500) to help
defray such expenses as computer time, materials needed as research equip-
ment, etc. Furthermore, free consulting services are often available
involving statistical design or computer programming. But, such services
are usually not available to most mathematics educators--especially those
working at smaller colleges or universities.

16
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In major research institutions, the idea is to use the general repu-
tation of the university, or the reputations of senior faculty members,
to create research funds that can be used to encourage younger researchers.
Research funds of this type can often be used very productively because:
(a) money is only committed after a project is well beyond the preliminary
planning stages, (b) only a fraction of the cost of the project is covered
by the small grants, and (c) because senior faculty members have an oppor-
tunity to influence research work of younger researchers. In other words,
a minimum investment of funds often produces rather large results because
the goal is not to buy research but rather to encourage and improve the
research efforts that are already being made.

Attitudes Toward Research

One of the most important factors influencing number and measurement
research is the general attitude that mathematics educators have toward
research. At cocktail parties it will continue to be acceptable (in fact
fashionable) to claim to lack a "mathematical mind" and to have little
ability in arithmetic or interest in mathematics. But it is hoped that
at mathematics education conferences, it will soon be unacceptable (in
fact not fashionable) to claim to have little interest or knowledge about
"research."

Mathematics educators are justifiably critical about the quality of
research in mathematics education. But, some mathematics educators use
complaints about past research as an argument against doing research,
having research meetings at professional meetings, or having a professional
journal for research in mathematics education. But to criticize poor
research is not the same as criticizing research in general-especially if
the criticism minimizes the chance that mathematics educators will ever
find adequate solutions to many of their most important problems. Research
is the act of trying to find useful information for school mathematics.

The nature of mathematics education. Research must not be mindless
data gathering followed by nit-picking analyses. Good research involves
(a) identifying an important issue, (b) formulating basic (answerable)
questions related to the issue, (c) determining answers that are useful
in a variety of situations, and (d) communicating the results and con-
clusions in a meaningful way to other mathematics educators. None of
these four aspects of research seem objectionable. What is it that
mathematics educators find objectionable about past research?

The real problems with research are that many of the most important
issues'have been neglected; the questions we have asked and the answers
we have obtained are often superficial or overtly simplistic. Many studies
are impossible to replicate, and so their results are not useful to other
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mathematics educators in other situations. We have not developed bases
of communication so that teachers and other researchers can use the results
that are obtained. Therefore, we should attack these problems--not research.

Because of the complexity of most of the important issues in mathe-
matics education, asking an important question seems to be almost irrecon-
cilable with asking an answerable question. However, this is only true
if one must restrict oneself to asking single isolated questions. The
problem is far less acute if groups of researchers work together on sets
of related questions, or if individual researchers build on the work of
others over an extended period of time. This means that most of the
problems mentioned above are directly related to problemS of communication
among mathematics educators.

Who does research in mathematics education? Some people seem to
believe that researchers must necessarily be "ivory tower" individuals
who know little about the "real world" of teaching and instructional
development. However, in mathematics education, many of our best re-
-searchers are also among those individuals who have the greatest contact
with children in the schools. In fact, in mathematics education, research
and curriculum development seem to go hand-in-hand. That is, it is diffi-
cult to continue to come up with good research questions over a long
period of time if one avoids teaching situations and curriculum develop-
ment projects; it is difficult to be a creative writer of instructional
materials if one avoids asking (and seeking answers to) basic questions
about teaching and learning. So, in the opinion of the author, good
research and good curriculum development must be closely related. For

example, participants at the Georgia research workshops representing
curriculum projects far outnumbered participants representing research
projects.

The influence of past research on classroom practice. Some mathe-
matics educators who claim to be good teachers insist that research has
had little influence on their teaching. This is naive. Every time a
teacher teaches, every time a set of instructional materials is developed,
the teacher or authors operated on some basic assumptions (perhaps unarti-
culated) about teaching and learning. Unfortunately, however, the assump-
tions are seldom more than "rules of thumb" that are often inappropriate
for some children or for some teachers in some situations. "Use concrete
activities before abstract," "create intuitive understanding before forma-
lization," or "use discovery rather than reception methods;"--each of these
slogans is appropriate in some situations and clearly inappropriate in
others. Yet, the range of appropriateness of such slogans has seldom
been investigated. Consequently, teachers are forced to operate on the
basis of a "theory" consisting of nothing more than a hodge-podge of
unorganized, unexamined, and (most always) overtly simplistic set of slo-
gans.
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It is naive to claim that a teacher teaches without at least some
untested assumptions or that a textbook is written without the same. The
only question is whether the assumptions are good ones or poor ones. A
good theory is one that can be communicated to others, and that avoids
obvious errors, oversimplifications, and inconsistencies. In a paper
given at the workshop on space and geometry (Lesh, 1975), I commented, and
repeat here that the

cyclic history of curriculum change (i.e., enthusiastic
adoption, followed by disillusionment, followed by
rejection) indicated that theory building has not really
been taken seriously by mathematics educators. If

mathematics education is ever going to make lasting
progress on some of its most important problems, then
the emphasis in research must shift away from "undirected
information gathering" and toward "theory building."
Theory building does not necessarily have to conjure up
images of dull "ivory tower" activities that make no
real difference anyway. For a beginning, theory building
can simply involve a point of view that can form a basis
for communication with other mathematics educators. In

this way, individuals can profit by (and build on) the
work of others. Also, in order to avoid obvious
errors and inconsistencies, theory building should
attempt to describe the range of applicabithy of its
major principles, and should reconcile major conflicts
within its point of view. When difficulties arise,
a theory should be more than a point of view that is
simply accepted or rejected; it should be an explanatory
"model" that can (and must) be gradually modified and
.reorganized to deal with progressively more complex
situations. (pp. 5-6)

Many of the problems with mathematics education research stem from
communication problems among mathematics educators and communication
problems between mathematics educators,and people in other disciplines.
Furthermore, these problems have been compounded because mathematics
education research has been viewed as an activity that is not integrally
related to curriculum development and as an activity that can take place
without being accompanied by theory development.

Over a prolonged period of time, it seems likely that mathematics
educators must take responsibility for their own research and theory
building. Psychologists and mathematicians should not be expected to
answer the questions of mathematics education. Nonetheless, it is
important to remember that, in the past, many of the people who have
been most influential in mathematics education have come from outside of
mathematics education. So, it is productive to try to attract the
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psychologists and mathematicaians to take an interest in basic issues in
mathematics education. One of the best ways to encourage such interests is
through research workshops where psychologists, mathematicians, and educators
can get together for intensive discussions over several days.

Because research is the act of trying to find useful answers to
important questions, it is naive to ask whether we should have research.
We will have research; the only question is whether it will be good research
or poor research. If the questions are superficial or if the results are
nothing more than "teaching tricks" that work only in particular situations,
then the research is poor. But, if groups of people can identify impor
tant issues that can be attacked cooperatively, and if the results of in
dividual research efforts are communicated in such a way that they are
useful to other mathematics educators, then the result should be better
research and more relevant applications in teaching and instructional devel
opment.

Summary acid Conclusions

Throughout the previous sections, a number of factors were mentioned
that effect the general milieu in which mathematics education research will
be conducted in coming years. The problems that were mentioned had to do
with the scarcity of research funds, communication problems among research
ers, the tight job market, and general attitudes about research among mathe
matics educators. The solutions to these problems had to do with using
research funds to focus and coordinate resources that are already available.
To do this, it was suggested that the trend should be toward promoting
cooperation and communication among people who are already actively in
volved in research rather than spending money to buy research. Some of the
needs that have been created by shortages of funds and by the tight job
market furnish levers that could be used to influence the direction that
research will take without stifling the initiative of researchers who are
most knowledgeable and most committed to those areas that are chosen to

receive special attention. By encouraging groups of researchers to work
together on cooperative (or at least related) projects, more important
issues can be attacked and more useful results can be obtained.

The research workshops that were sponsored by the Georgia Center for
Learning and Teaching Mathematics seemed to offer a means of making
efficient use of resources that are already available and for facing some
of the severe problems that researchers will confront in coming years.
The workshops also recognized the fact that instructional development and
theory building must both be integrally related to future research efforts
that are made, and that coordinating existing research efforts is at least
as important as attempting to generate more information.
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Trends in Future Research Concerning Number and Measurement Concepts

The workshop on number and measurement was organized into three
working groups: cardinal and ordinal number, rational number, and
measurement.

On the first day of the workshop, it seemed that the three working
groups might have little in common. But, as discussions proceeded, some
common themes and some mutual interests emerged. For example, one
unifying theme had to do with the function and use of concrete materials
to help children develop basic concepts about rational numbers or
counting numbers. It was clear that many children's misunderstandings
about number concepts are closely linked to misunderstandings about
the models that are used to teach the concepts, and it was clear
that different models often emphasize different aspects about a
particular concept. But there were many disagreements about how concrete
materials can be used most effectively. For example, each of the
materials in Figure 1 can be used to illustrate rational number concepts,
and each emphasizes an aspect of the number 1/3. It can be argued
that each of the types of materials is "good" in some ways and "not
so good" in others. Some of the materials stress the "fraction" or
"part of a whole" interpretation of rational numbers. Others emphasize
the "ratio" or "proportion" interpretation of rationals. And, others
emphasize the "ordinal" or "operator" interpretation of rationals.
Still others discuss rationals as "ordered pairs" or as extensions of
our numeration system. Other issues also arise. For instance, which
materials are most abstract, or concrete, or complex? Which will be
easiest for youngsters to use? Which materials will allow youngsters
to deal most directly with the most elementary interpretations of
rationals and yet not lead them to form misconceptions that will make
higher order understanding more difficult (e.g., youngsters who have
learned that rational numbers refer to "parts of a whole" may find
difficulties when they confront three-halves). What role does
familiarity play in selecting materials? Which materials will draw
upon more useful intuitive notions without also conjuring up irrelevant
properties? How many different types of materials should be used,
and in .t order should they be presented? Finally, are there any
genera...4ations that can be made about discrete models versus continuous
models, or about cardinal-versus-ordinal-versus-measurement models?
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The cardinal and ordinal number group focused on the acquisition of
early number concepts and was more self-consciously Piagetian (or at times
anti-Piagetian) than the rational number group, but many of the discussions
centered around similar issues. For instance, Brainerd argued that psycho-
logists and mathematics educators have neglected ordinal number ideas, and
that researchers and curriculum developers have focused almost exclusively
on cardinal number concepts. Yet, Brainerd pointed out in his paper that
ordinal concepts develop earlier than cardinal concepts. On the other
hand, other participants pointed out that Brainerd's use of the words
"cardinal number" and "ordinal number" were not entirely consistent with
their usual meanings, and several expressed the belief that Brainerd's
results were obtained because his studies were systematically biased in
favor of (what he called) "ordinal number" concepts. For example, some
of Bryant's work (1974) seems to indicate that certain "ordinal" ideas
also develop at about the same time as Brainerd's "ordinal" concepts. Or,

some of Steffe's work (1973) might argue that the concepts that Brainerd
and Bryant have studied are not number concepts at all but rather are
prenumber concepts. It could be that arguments about children's early
number concepts miss the point. Perhaps the real issue is whether it is
appropriate at all to analyze tasks or concepts on the basis of their
underlying mathematical structure. For instance, Piaget's theory is based
on the hypothesis that it is appropriate to order and equate tasks and
concepts on the basis of their underlying operational structures, but an
analysis of the figurative aspects of a task often seem to be equally as

22



14

important as its operational aspects, and certain "information processing"
variables (see Carpenter and Osborne's paper in this monograph) seem to
account for a great deal of the variability among tasks.

In all of the above discussions, the word "structure" became a
central idea. Yet, "structure" was used in at least three different
ways corresponding to three ways that mathematical concepts can be
organized. There are: (a) mathematical structures, the way the discip
line (or mathematician) organizes a set of concepts; (b) instructional
structures, the way the teacher, textbook, or instructional program
organizes a set of concepts; and (c) cognitive structures, the way a
student (or child) organizes the set of concepts.3 Furthermore, it is
easy to find a learning theorist who supports almost any conceivable
connection between these three types of structures (e.g., cognitive struc
tures determine instructional structures--Piaget; instructional structures
determine cognitive structuresGagne; disciplinary structures determine
instructional structuresAusubel). The point is that there may frequently
be an important distinction between the logical development of an idea and
the way students come to understand it. Unfortunately, however, for many
of the ideas discussed at the number and measurement workshop, surprisingly
little is known about the way children organize mathematical concepts. Yet,
concerning psychological theories that seem most relevant to mathematics
educators, preconceived biases about the nature of mathematical concepts
appear to account for at least as much variance among theorists as a priori
biases about the nature of cognition.

It is remarkable that so little is known about the nature of children's
early conceptions of many mathematical ideas. This may be because the
first mathematical judgements children learn to make relative to a given
mathematical idea are highly specialized, closely tied to specific content,
and highly restricted. But the ideas that mathematicians use as building
blocks for their theories are those that are most general, those which
can be used in the widest range of circumstances, and those that give rise
to "nice" theories. If we try to use children's first concepts as building
blocks for a theory (for example, as Grize (Beth & Piaget, 1966) has done
using Piaget's grouping structures), we would find "messy" primitive
concepts that do not give rise to neat, tidy, elegant theories. For
this reason, mathematicians have not taken The trouble to formalize such
awkward structures--especially as building blocks for a theory. In fact,
it seems unlikely that mathematicians will ever take the trouble to
describe most of the structures children use when they first come to
master a given idea.

3
Perhaps there is also a fourth category which could be called

psychologists' structures corresponding to the way psychologists organize
the concepts.
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Some of the best resources we have describing the nature of children's'
early number concepts have come from Piagetian studies. Nonetheless,
because Piagetian research has focused on the formation and description of
cognitive processes used by first-graders (i.e concrete operational
groupings) and by sixth-graders (i.e., INCR groups), children at interme-
diate levels of development have been neglected, Furthermore, because
psychologists in general (and Piagetians in particular) have avoided
mathematical ideas that are typically taught in elementary school, it is
often possible to make only relatively crude inferences about how children's
mathematical thinking gradually changes from concrete operational concepts
to formal operational concepts. It is time for mathematics educators to
apply Piagetian techniques and theory to concepts like rational numbers and
negative numbers that exist at intermediate levels of development. For

example, Kieren's paper represents a first step in the direction of a
Piagetian analysis of the concept of rational numbers.

To examine the nature of children's conceptions concerning a given
idea, it is useful to begin by sorting out various mathematical interpre-
tations of the idea and then to devise a variety of concrete embodiments
of each of these interpretations. In this way, our knowledge about mathe-
matical structures can be used to investigate children's cognitive struc-
tures, and information about cognitive structures can be used to direct the
development of instructional structures (see Figure 2).

Idea Interpretations

rational

numbers

ratio

proportion

operator

Figure 2

Embodiments

discrete
(cardinal)
models

ordinal models

measurement models

discrete models

Steffe (1973) and others have argued that it is possible to describe
children's behavior on number related tasks using well-defined systems
that already exist in mathematics. That is, there may be no need to in-
vent new and unfamiliar systems (like Piaget's groupings) to model children's

thought processes concerning number concepts. Furthermore, at the space

and geometry workshop, I described a method of using information about the
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mathematical structure of an idea to guide research concerning children's
cognitive structures concerning the idea. Similarly Osborne and Carpenter,
and Osborne discuss ways of using information about the mathematical struc-
ture of concepts to make decisions about instructional sequencing and to
make predictions about transfer of learning.

In the discussions that took place at the number and measurement work-
shop, distinctions were made concerning various modes in which a given idea
might be investigated. There is written symbolic mathematics; there is
spoken mathematics; there is picture symbolic mathematics; there is mathe-
matics in the context of concrete models; and there is mathematics in
real world situations.

written symbols

real world situations

Figure 3

Children may experience difficulties Within any one of the above
levels (e.g., illustrate 2 + 3 = using a number line and ask for an
illustration using counters); or, within a given situation, they may
have difficulties translating between various interpretations of a given
concept (e.g., ask a child to put out a row of counters and to label them
"1," "2," "3," "4," and so forth. Then cover the first seven counters
with a handkerchief, and ask how many counters are covered. The answer
requires the child to use the ordinal information that is given to make
a judgment about the cardinality of a set). Children may also have
difficulties translating from one-mode to another (e.g., from spoken words
to written 'symbols, from concrete models to real world situations, from
pictures to concrete models, etc.). Yet, many of these within-mode
translation problems have been neglected by both authors and researchers.
Nonetheless, information processing variables from psycholinguistic
literature could furnish some useful ideas for improving mathematics
instruction.

Among the many research projects that were planned by participants
at the number and measurement workshop, the following four categories of
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studies seem relevant to mention in conjunction with what has been said
in these comments.

1. Piagetian style studies were planned aimed at investigating the
nature of children's primitive conceptions about rational numbers and.
counting numbers.

2. Studies Ilere planned aimed at investigating the operative
aspects of certain tasks. These studies would involve some of the major
ty):s of instructional materials that are typically used to illustrate
rational numbers and counting number concepts.

3. Studies were planned aimed at investigating ways that measurement
activities could be used to facilitate the developmental number concepts.
More then 60 years ago, Dewey and McClellan (1914) wrote a book describing
ways that number concepts develop out of measurement activities, and the
points that they made have been reinforced by Piaget, Inhelder, and
Szeminska (1964) and by Soviet psychologists like Gal'perin and Georgiev
(1969). But, with the exception of a few projects (like Developing
Mathematical Processes, 1974), very little has been done to develop
materials that use measurement activities as a means of facilitating the
acquisition of number concepts. Measurement activities have tended to
be thought of as "applications" that can only be presented after number
concepts have been learned.

4. Coordinated series of "teaching experiments" like the rational
number studies recently conducted at the University of Michigan (see
Payne's paper) are becoming increasingly interesting to researchers.
For example, Steffe (1975) and Kantowski (1975) have both discussed the
use of "teaching experiments" to investigate the acquisition of number
concepts.
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The Mathematical and Psychological Foundations

of Measure

Alan R. Osborne

The Ohio State UniVersity

Introduction

A measure system is a complex structure of ideas. The child must
learn many such systems in maturing to adulthood. Each measure system,
whether denoted by a word such as length, angularity, work, time, area,
energy, volume, or pressure, is based on a characterizing function. This
characterizing function ties together two mathematical structures possessing
analogous operations. One structure is the domain space of the function;
the other the range spate. For example, if the measure system being
considered is area and we restrict our discussion to polygonal regions
in the plane, the domain space is the set of polygonal regions. An
operation that provides a structure for the domain space is that of
union of nonoverlapping polygonal regions. The range space is the set
of positive real numbers. The operation of addition corresponds in some
sense to union in the domain space and provides a parallel structure
within the range space for the operation of union.

Thus, within a given system of measure, the analysis of the learning
must be in terms of(a) the acquisition of the domain and range space
structures and(h) the function relating the two structures. Since
successful learners use the-structure of one space for support and guidance
in learning the structure of the other space and in attaining a sense of
the function itself, the psychological process under consideration is
transfer. Henceforth, this will be called the within transfer problem
since it is, so to speak, internal to a given measure system.

Most systems of measure, such as length and area, share one or more
characteristics or attributes. That is, the function characterizing a
particular measure system, such as length, possesses some properties
that are common to the characterizing function of another measure
system, such as area. An example of a common property for the measure
systems of length and area is that congruent domain elements map to the
same range element. Given the extensive experience of children and
adolescents with different systems of measure, a remarkable feature of
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their performance is that it proceeds so inefficiently. That is to say,
the typical child does not use the learning of properties for one
characterizing function to advantage in learning about other measure
systems. Thus, another important aspect of the study of how children
cope with measure is an analysis of the learning of one system of measure
in terms of the related previously learned measure system. Henceforth,
this problem will be labelled the across transfer problem.

A final aspect of the child's dealing with measure stems from the
widely held belief that the geometry of measure is one of the best and
most appropriate intuitive floors for instruction for concepts of number,
algebra, and analysis. For example, multiplication of fractions naming
rational numbers is frequently provided an instructional rationale
based upon area properties. The addition and subtraction of integers
is commonly given a measure-based justification depending upon manipulation
of line segments given a directional orientation. Thus, a third structural
learning problem deeply involved with measure is also a transfer problem.
The transfer is from a measure system context to learning out of the
context of the specific system of measure. Henceforth, this transfer
problem will be labelled the outside transfer problem.

The outside transfer problem is in many respects a subset of the
within transfer problem. It differs from the within transfer problem
primarily in terms of the intent of instruction. That is, for the within
transfer problem the intent of instruction is to teach about a measure
system. For the outside transfer, problem, the goal of instruction is
not to teach about a measure system but rather the effects of that leafning
upon other instruction on topics not necessarily bound to a particular
measure system. The teacher using measure on the number line to illustrate
addition of fractions does not have as a goal to teach length; the objective
of instruction is to build skill and understanding for adding fractions.
The distinction is in terms of instructional intent and is, admittedly,
a somewhat artificial, although useful, distinction.

In this paper the analyses of the problems of learning measure concepts
are primarily in terms of the three types of transfer of learning problems,
the within a single system of measure problem, the across measure systems
problem, and the problem of extending concepts to learning outside of the
realm of a measure system. In the next section of this paper, some
principles of teaching for transfer are defined to establish a context
for examining each of the transfer problems. Then each type of transfer
problem is examined in terms of the learning problems associated with
that particular category of transfer. Next, some features of measure
systems possessing a significant potential for interference with the
transfer are considered. As a basis for organization of research
concerning the learning and applicati^n of measure concepts, a retro-
spective view of transfer will be given by way of a summary.
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Transfer*

The nature of what is to be learned about measure focuses attention
on the psychology of transfer of learning. Fortunately, there is a rich
tradition of experimental work concerning transfer. This work has its
beginnings in the turn-of-the-century attacks on mental discipline and
faculty psychology (Kolesnil., 1958) and has culminated in several
principles of direct applicability in the classroom. For example, five
such principles stated below are based primarily upon the writings
of Ausubel (1968), Bugelski (1971), and. Cronbach (1965). Even though
the statements may lack the qualifiers necessary to assuage the
psychological purist's concern for precision, they are stated in terms
of instruction in the belief that this specifies the nature of the
problems of learning about measure encountered by the child and serves
to identify needed research into teaching about measure.

Transfer assumes that two sets of concepts, principles, or generali-
zations are to be learned. The two sets, P and S, share common character-
istics of the subsequent set, S. If the learning of P enhances, improves,
or makes more efficient the learning of S, then positive transfer occurs.
Transfer is the product of the learning of P. It depends not only on
what is learned but how it is learned. That is to say, the conditions
for learning P, the stimuli sets and the mediating processes, all
contribute to establishing the transfer of learning.

The five principles of teaching for transfer assume that the set
of common attributes for the prior learning, P, and the subsequent
learning, S, have been identified.

Principle 1. Instructional materials and design for P must be
explicit in terms of the attributes of P net are
common to P and S.

Principle 2. The more complete and thorough the learning of P,
then the greater the probability of transfer.

Principle 3. The design of instruction for S must be in terms
of the attributes and conditions of learning that
characterize P.

Principle 4. More powerful and inclusive concepts, principles,
and generalizations have greater potential for
facilitating transfer than the less powerful or
inclusive.

*
This section on transfer is an adaptation of a portion of the

author's "Mathematical Distinctions in the Teaching of Measure" which
appears in the NCTM's Measurement Yearbook edited by Doyal Nelson
(in press).
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Principle 5. Instruction for S must focus on the differences as
well as the commonalities of the attributes of P
and S in order to protect the learner from over-
generalization and misapplication of the concepts,
principles, and generalizations of P to S.

The emphasis on prior and subsequent learning focuses attention on
the temporal factor in consideration of learning. Must children learn
about joining two segments on a line (prior learning) before they
encounter the additivity property incorporating number into their
conception of length? Or does the incorporation of number concepts cue
children about properties associated with joining segments? It should
be recognized that sometimes transfer happens in reverse order; for
example, teachers often encounter a student who, on experience with
the intended topic of subsequent learning, finds the prior concept is
at last understood. This sort of reverse transfer is not accounted for
within the above five principles because this is not the customary
intention of planning instruction Tor transfer. Teaching for transfer
is an intentional act.

The temporal intentional factor often is not considered within the
instructional design for measure; concepts, principles, and generalizations
of the P and S sets are simply muddled together. Textual materials are
frequently used that force the child to conceptualize within the domain
space and the range space of a measure function simultaneously with the
result that understandings are not sharp and useful. Indeed, the time
factor may be a variable of some research significance since we do not
have an adequate experimental grasp of the effect of this variable.
However, the concern of the following sections is with the nature of
the content and its implications for transfer.

The Within Transfer Problem

Most measure systems of significance in the school curricula,
whether in mathematics, science, or vocational education, are homomorphisms.
The application of these measure systems establishes their significance.
The homomorphism for a measure system is specified by the characterizing
function of the measure system and the structures of the domain and range
spaces. For example, if the area of polygonal regions is the measure
system under consideration, an area function A maps elements r from the
set of all polygonal regions R into the set of positive real numbers R+.

We write:

A(r) e R+
or A:R R+.

Operations can be performed within the domain space; the union of non-
overlapping contiguous regions yields a region. The f .action A
"preserves" the operation of union within the range space R+ as indicated
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The homomorphism provides the basis for the within transfer problem.
The characteristics, relations, and operations of interest in the domain
space R are preserved in the range space by the function A. The learning
of R, its characteristics, operations, and relations, constitutes the
prior learning set P for the area measure system. The learning of
characteristics, operations, and relations in R+ constitutes the subsequent
learning set S.

This transfer situation differs markedly from the traditional
description of transfer afforded by psychologists. The traditional
definitions of transfer do not have two characteristics possessed by
this situation. First, transfer is usually described in loose terms;
"P and S share common attributes or characteristics" is typical of word
usage relative to transfer. Gagne (1970), for example, in discussing
lateral transfe- states, "[transfer] refers to a kind of generalizing
that spreads over a broad set of situations at roughly the same 'level
of complexity'" (p. 335). Note the imprecise nature of the statement.
The homomorphism provides a significantly more precise grasp on the
nature of the word "share" and, indeed, serves to identify some of the
attributes that are common. Second, in a sense the process of transfer
itself is one of the desired learning outcomes or teachable objects.
The typical transfer task does not have as an objective the process of
transfer itself. The characterizing function and its properties for a
measure system are, if you will, a set of correspondences mirroring the
associations of the transfer process. The learning of a measure system
is incomplete unless the child acquires the sense of the homomorphic
linking between the domain space and the range space.

Several advantages accrue to examining children's learning processes
for measure in terms of homomorphism-based transfer. First, the
homomorphic analysis refines the nature of the questions researchers
should be asking about the learning of measure concepts. Teachers are
not the only ones who muddle together the P and S sets of learning.
Second, the examination of homomorphic transfer does provide an argument
for the significance of Piagetian researchers' concern for studying
carefully the child's prenumerical, manipulative operations with the
objects to be measured. Steffe and Carey ,1972) and Van Engen (1971)
argue, for instance, that many of the measure concepts need to be
"operationally defined." To compare the lengths of two rods, the child

32



24

needs to juxtapose physically the two rods examining the extension of one
beyond the other while the other ends are aligned. According to Steffe
and Carey, the manipulation of juxtaposition provides an operational
definition made by the child for the child. Thus, for many measure
systems, operations and relations within the domain set of the characterizing
function have operational definitions within the manipulations of objects.
The phrase "operational definition" captures both the essence of the
manipulative base of the operation in the action of the child and the
feel for this aspect of measure being defined by the child in the same
spirit of a researcher defining intelligence in the operational sense
of performance on an IQ test.

Several different attributes of the domain set may be operationally
defined. Among these are:

1. Transitive property. If region A has the same area as region
B and region B has the same area as region C, then region A has the same
area as region C (similarly, for less area than and greater area than).

2. Substitutive property. If region A has the same area as
region B and region B has more (less) area than region C, then region A
has more (less) area than region C.

3. Symmetric property. If region A has the same area as region
B, then region B has the same area as region A.

4. Asymmetric property. If region A has more (less) area than
region B, then region B does not have more (less) area than region A.

5. Reciprocal property. If region t, has less area than region
B, then region B has more area than region A.

When operationally defined, each of the properties is a prior
learning, an element of the P set, for the transfer learning for the
measure system of area. The homomorphism "carries" each property into
the range space, the set of subsequent learning. The prior, learning set
for measure, sometimes referred to as primitive subconcepts, accordingly
needs careful attention in and of itself. According to Principle 1
for teaching for transfer, instruction for P must be in terms of shared
attributes of P and S. The learner who orders regions in the operational
sense by using the transitive property has the requisite foundation for
coping with order in the more powerful and complete sense mandated by
the order' properties of the numbers in the range space. This is to say,
transfer will not take place if there is no learning set P of operational
definitions to provide the base for transfer. Observation of this is
frequently difficult since the child has established separately some
of the order properties for number. Although the child may appear to
possess the range space order properties, they have been established in
terms of number and are not part of a measure system tying together
attributes of both P and S.
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The child cannot be said to understand a measure system until the
operational definitions of properties of the domain space, the corresponding
properties of the range space, and the characterizing function that
unites them into the measure system are exhibited. Many Piagetian
researchers err in stating they are studying the child's acquisition
of measure when they limit their purview to only the properties of the
domain space. This is an incomplete examination of what is involved
in learning measure since it involves only the prenumber aspects of
measure. This is not to say that the examination of how children cope
with the domain space is not important; rather, it is to point out that
there is much more to learning a measure system than simply .acquiring
the operational definitions. Indeed, in this writer's opinion, for length
and area systems in particular, we are beginning to have enough evidence
of the characteristics of children's learning of operational definitions
that We can begin to examine more closely how children tie the range
space attributes to the operational definitions. That is, how do children
build number into their understanding of measure?

How then should the researcher approach the study of'how children
incorporate number into their schemata for measure? Analyses of the
mathematics and of the psychology of transfer suggest that the unit and
unit iteration deserve particUlar attention. Unit iteration, as the
means of construction of the numerical range space, has an apparent
logical simplicity when considering length,,area, volume, and angularity.
The simplicity obtains from the capability of readily expressing unit
iteration in terms of corresponding operational definitions in the domain
space. The child who conserves regions on joining them or splitting
them, in the sense of covering, possesses a base for building an iterative
procedure. If region N can be built from regions M and a unit U based
upon the child's understanding that N and (MVU) cover the same region
then a base for iteration exists. Other alternative approaches to
building number into the measure system for area appear more complex,
either bs-ause of the use of numerical properties and operations without
a clear ,perational base in the domain space or dependence upon greater
inferenze of domain space properties from the properties of the range
space. Corresponding argumenLs concerning the efficacy of examining
unit iteration can be made for other measure systems such as length,
angularity, and volume. The significant questions for researchers point
directly to the prenumber domain space and the numerical properties of
the range space. Study of how children work within the context of unit
iteration appears to be a productive avenue to follow. Gal'perin and
Georgiev's study (1969) indicates both the differing conceptions of
unit possessed by children and the fruitful character of such research.

Benin's (1964) study of perceptual and cognitive conflicts concerning
area concepts for the young child indirectly addresses some of the learning
problems associated with building area concepts on an iterative base.
Children were asked to make a judgment of whether two polygonal regions
built of units were of equal area. Some of the light board displays of pairs
of polygonal regions were of equal area and congruent and some of equal area
but not congruent. Children could not manipulate the displays in the
sense of using or making an operational definition. The children who
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were successful in coping with displays of equal but,noncongruent
displays (see Figure 1) give what Beilin labels as either iterative or
translocative explanations. The iterative explanations were apparently

Figure 1. An example of,a display from Benin's study'(1964).

labelled as such because of the child's incorporation of number into his
explanation. Beilin recognized the problem of the child making positional
judgments, concerning the number of units, without any feel for the
covering aspects of area. That is, the child's judgments did not pre-
clude using and counting units with little sense that they may be con-
gruent and serve to cover the regions in question. Each unit mny have
been considered,a discrete entity with the nature of its position being
more important perceptually than its covering or region-filling nature
(Flavell, 1963). The Beilin study is of particular note because it
suggests the status of children's thinking relative to the incorporation
of number into their conception of the system of area measure. Suggestive
of operational approaches that might well be explored further, it
identifies some of the quasi-measure factors that the child may use in
generating the homomorphic links between regions and numbers. Little
research evidence has been gathered concerning the precise nature of
the interaction between positional and discrete conceptions of the child
and how this evolving interaction contributes to the formation of the
mature conception of area for nondiscrete objects. The child's reliance
upon the discrete or positional concepts appears to be a factor with
regard to whether the child fixates on an inadequate judgment of the
area relations between the objects or can indeed be rational in thinking
through the comparisons and operatior.s.

The hypothesis that unit iteration provides a superior instructional
base for establishing the functional relation between the.domain and the
range spaces assumes the child has the capability for dealing with
operations and relations within both the domain and the range spaces.
The transfer analysis also assumes the learning within the range space
vs numerical relations and operations is new or initial learning. In
point of fact, this is seldom the case. Typically the child has had
experience with number. ,Thus, the, instructional problem frequently
boils down to "How can the teacher design instruction to emphasize and
establish the homomorphic character of the measure system?" This may
mean incorporating discrete and positional concepts into the instructional
strategy for teaching area with the intent of withdrawing or extinguishing
the child's reliance upon them as concepts of reversibility and conservation
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of the measure system are acquired and linked with number concepts.

The instructional sequence for area in many text series shifts from
the unit iteration approach to the rectilinear product approach specified
in terms of length times width. This may well happen to some children
before they sort out and clarify many of their early conceptions of the
unit at.d make the homomorphic link between regions and numbers.

The hunch of the author is that many of the primitive subconcepts
or properties of the domain space are obscured foe the child by the
fact that every polygonal region must be forced into a rectilinear
representation. The child must use the primitive subconcepts in an
operational sense to acquire the concepts and skills that are the targets
of instruction. To cut up a parallelogram into pieces and rearrange
them to form a rectangle demands conservation. The rearrangement forces
the learner to make decisions concerning the best way to partition the
figure. Indeed these decisions demand more than an understanding of
conservation. There are many ways to partition a parallelogram. Some

of them "work" to produce a nice rectangle; some do not. We need more
research of the nature of Wagman (1975) that examines the relation of
conservation to the partitioning problem. Moreover, the confounding
factors of decisionmaking of the nature discussed in Wertheimer's
Productive Thinking (1959) should not be ignored. The difficulties of
some mature students in constructing proofs of the parallelogram area
formula within a theorem sequence that demands consideration of the cases
in which the altitude falls outside, as well as inside, the base is
indicative of the conceptual decision difficulties extending beyond
conservation.

In using the rectangular product approach to area, a second type
of difficulty that obscures the primitive subconcepts for many learners

' is that the correspondence between the union property in the domain
space and the addition in the range space must necessarily incorporate
usage of the distributive property. Weaver's research (1973) suggests
many children may not naturally have facility with the distributive
property to a sufficient extent for it to serve as an instructional
base. CAreful task analysis reveals that a logical organization for
instruction would require that the child already possess some sense of
the rectangular product definition of area before being able to grasp
all that is involved with the additivity property when confounded with
distributivity.

The learner needs to acquire control of the rectangular product
approach to area. It is a practical and expedient understanding to
possess. The unit iteration approach to area does not have sufficient
power or efficiency to allow the student to cope with area in settings
involving nonpolygonal regions or problems involving irrational numbers.
A learner's understanding of area typically evolves from an intuitive
informal feel for units, covering, and iteration to a more thorough and
complete basis. The move to the product based area in terms of
rectangular regions frequently amounts to an abrupt shifting of the student
from familiar iterative settings to settings demanding new intuitions.
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Text series tend to ignore or evade the problems of helpinglearners
establish the connections between the iterative bard and the product
based approaches to area. The suspicion of the author is that many of
the resultant problems of learners in coping with area derive from the
nature of transfer; that is, teaching for transfer requires attention to
the how of learning as well as the commonalities of what is to be
learned. The referents for the iterative instructional approach appear
different to kids than those for the product approach. (See the
Carpenter paper in this collection.)

The learner typically does not develop his intuitions concerning the
rectangular product version of area measure in an official measure setting.
Rather, his primitive notions develop within the curricular setting of
number concepts and skills. The product-area approach is used an an
embodiment, or a referent base, for teaching concepts and skills for
whole and fractional rational numbers (the outside transfer setting).
Often there is no diagnostic check to ascertain whether the child does
possess sufficient understanding of area for this instructional appeal
to intuition. For many children, this incidental setting is where area
measure concepts are acquired. The perceptual-conceptual basis for the
multiplication of numbers typically is of a discrete, positional nature.
Teachers and designers of the instructional materials for multiplication
typically do not attend to area as the rationale or embodiment for
multiplication. The child's chubby finger moving from square to square
in a 2 x 3 rectangular lattice is sufficient for the child to register,
on a positional and discrete basis, that two onto three is six. But
it does not necessarily help the child associate each of the squares
with the space-filling character of these six units. Consequently, the
embodiment of product concepts on an area base often lets the operationally
defined domain attributes for regions slip away if they have been
established, at all.

One of the outcomes of this incidental learning about area develops
later-When the child officially encounters the area formulae. An
assumption of.prior experience with area is made; children are simply
given the formulae. Such a development appears to leave to chance
whether the child will relate the domain space attributes or the
operational definitions for area to the computational formulae developed
within the rectilinear product curricular strand. The oft-stated remark
that teachers tend to force the computational measure formulae on students
too early may well be true in many cases. In fact, it often may not be
a matter of formulae being taught too early, but rather of the formulae
being established relatively independent of the conceptual bases of the
domain space and its homomorphic link with the range space.

Students eventually must use and understand the product approach
to area. Study of how the child builds the product concept of area
into his thinking is important. The roles of the operational definitions,
the domain space manipulations, need tc be examined both in terms of
their specific contributions to the child's acquiring the more mature
product based area concept and in terms of whether the product area
concept forces changes in them. But, the within transfer analysis is
complicated by the need to shift from the unit iterative approach to
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the product approach for incorporating number into the area measure
system.

The within transfer problem has, to this point, been discussed in
reference to the child's conception of area. This measure system was
selected primarily for two reasons. First, area involves an intriguing
and revealing interaction of the psychological and mathematical factors
in considering the learning of children. Second, area concepts provide
the intuitive geometrical gateway for a large number of other important
mathematical ideas.

Many other measure contexts could serve as the domain of discourse
for examination of the within transfer problem. The particular contri-
bution of the Piagetian psychologists' analyses of the child's conception
of measure has provided extensive evidence supportive of application of
the first principle of transfer, stated previously. They have refined
the notions of the operational factors in the child's thinking within
the domain space of the characterizing function. The many studies of
distance and length provide a firm foundation for establishing the
homomorphic character of these functions in terms of designing instruction
for the prior learning set or the domain set of the function. The
distance function operating on a domain set of segments such that each
segment is mapped to a positive real number has been explored thoroughly
by researchers in terms of the child's operationalizing definitions
based upon manipulation of segments and objects. Strict analogues of
the attribute statements for area discussed earlier have been explored
in great detail. In addition to these properties of the domain space
of the function, the following three properties of the function are
important:

1. Additivity: The join of two nonoverlapping segments has the
same measure as the sum of the measures of the individual segments.

2. Unit: There exists a segment that maps to one in the range
space.

3. Congruence: Congruent segments map to the same real number.

The same primary problem exists for researchers that was described
for the area measure system. Namely, "How does the child incorporate
number into his schemata for distance?" Iterative procedures again
appear to have a nice potential for establishing the character of the
range space and its relation to the domain space. Again, the discrete
and positional factors in children's reasti.ing and perception appear to
confuse their incorporation of number into about distance.
The child who concentrates more on the number of units and considers
them as discrete positioned "points" in working on'the number line
.without using their covering attribute does not possess a measure
system of notable power. Must the child go through this stage in his
reasoning? Is it necessary for him to do so in order to incorporate
number into his schemata for distance? Does it ever lead to proactive
inhibition in his tying together range and domain space attributes?
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Although no precise parallel exists to the problem of how children
incorporate the product concept of area into their iterative base, the

,problem of how children move from "nice" polygonal regions to the more
complex curves is paralleled. In the upper elementary and junior high
school years the child must acquire a sense of distance on a curve.
Little evidence of how children learn to link number with curves that
are not nice straight lines has been collected.

The volume function also yields to a homomorphic based analysis
of transfer. The properties of unit, congruence, and additivity hold
as they do for distance and area (in the across transfer sense). In
the within transfer setting, the critical questions concern how the
child establishes the homomorphic "links" between the domain space and
the number or range space structures. If prior research of a Piagetian
nature is examined, our knowledge of how children conceptualize the
operational definitions or the prenumber base for comparison is more
than a little confused. For example, Piaget, Inhelder, and Szeminska
(1960) defined stages corresponding to the child's conception of
volume using the descriptive phrases interior volume, occupied volume,
displacement volume, and mathematical multiplication. The last stage
corresponds to the incorporation of number into the volume homomorphism
model in the same sense as the product approach to area. Displacement
volume conjures up images of Archimedes' Eureka and specific gravity.
(Some researchers appear more than a little confused by the distinction
between specific gravity and displacement volume, failing to recognize
when children make more accurate scientific observations than the
researchers do in their analysis of the children's statements. See
Kamii and Derman (1971)), Interior volume is defined as the invariance
of the amount of matter which is contained within the boundary surfaces,
whereas occupied volume is defined as the amount of space occupied by
the object as a whole in relation to other objects round about (Piaget,
et al,1960, pp. 359-360).

Even though the mathematical distinction between interior volume
and occupied volume seems hazy, Lunzer (1960) and Elkind (1961), like
the Geneva group, have observed stages in children's reasoning
corresponding to these stages. The differences in the actions and
statements of children appear to hinge on how they incorporate number
into their thinking about volume. Unlike research in area and distance
concepts, the volume situations that Piagetians have posed for children
do not readily allow the child to operate exclusively in the domain space
without resorting to number either in the iterative or multiplicative
sense. Thus, the status of the child's operational definitions is
difficult to determine or observe. Engleman's (1971) approach to dis-
placement seems more clearly delineated in this sense although volume
was not primary concern. Although the parallels between the area
measure learning and the volume measure learning are striking in terms
of the within transfer analysis, the evidence concerning the child's
operationalizing concepts in the domain space or prior learning set
for volume are not available.
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The disparaging tone of the previous paragraphs concerning the lack
of clarity of definitions concerning the four stages of the child's
conception of volume may be symptomatic of an unavoidable complexity;
perceptually, volume is a mess for the child. The child can operationally
define, through juxtaposition, his conception of comparison for both

length and area. But how does a child juxtapose two volumes? Whether .

they be liquid or solid volumes, the child encounters manipulative and/or
perceptual complications. Pikas (1966) and Wohlwill (1962) identify
spatial and temporal continuity as key variables in concept formation,
particularly for the young child. The perceptual and manipulative
difficulties suggest that the child's use of numerical cues in forming
the concepts of volume may be productive for researchers.

Designing activities that focus directly on the operational
definitions fot solid and liquid volumes for the purpose of assessing
children's thinking or for ele purpose of designing experiments appears
to be unrealistic because of perceptual complexity. Unless an iterative
or multiplicative situation that incorporates number exists, one cannot
compare volumes without resorting to the indirect measure context of

displacement. The use, by some children, of numerical cues in the
volume measure context prior to their having a complete multiplicative
grasp of volume is established, but the precise nature of how the child

acquires and Uses this range space information ia not known (Carpenter,

1975). Lovell and Ogilvie (1961) conjectured that learning the volume
formula for rectangular parallelepipeds would, enhance the acquisition of
the conservation of volume. In order to gain more complete information
about how children build the homomorphic linking of the domain space
and the range space for the volume function, we need to examine more
carefully if and how children use numerical cues from the range space
to build conceptions in the domain space.

Studies of the nature of Carpenter's (1975) suggest that experience
and maturity are the key factors controlling children's acquistion of
volume measure concepts. Cross-cultural Piagetian studies, Such as Gay

and Cole's The New Mathematics and an Old Culture (1967), also suggest
the key role of experience factors in the child's conception of volume

although their work does not directly examine the child's operational
definitions in the sense stipulated in this paper. Their study of

children in the Kepple culture in Liberia focused upon the children's

experience with conically shaped piles of rice in the market place or

in the preparation of food. Their observations indicated simply that
Kepple children were shrewder in judging volumes than their age-group
counterparts in the United States.

These studies were not, however, designed to reveal the effects of
incorporating numerical cues into the child's experience. The fact that
maturity and experience are apparently the key factors, if learning is
judged in terms of domain space concepts alone, suggests turning to

other variables. Thus, the study of the young child's coping with
volume measure appears profitable for curricular development in the
context of their use of numerical cues to form and refine their opera-

tional definitions. The complexities of the perceptual context and the
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necessity of the child's using indirect comparisons suggest that
children's acquisition of volume concepts is most profitably examined
if a larger base of experience with measure exists in the within transfer
setting.

Volume measure has been contrasted with distance and area measure
in terms of the possibility for direct comparison within the domain
space for the characterizing functions. Clearly length and area provide
settings for the child to use direct perceptual evidence to build opera-
tional definitions. This is also true for measure systems for numerousness
(discrete objects) and for angularity. The large majority of other
measure systems (e.g., speed, temperature, et cetera) do not allow for
the child's building operational definitions upon the simple direct
perceptual evidence of their manipulation of physical objects. The
within transfer analysis is most applicable to those measure systems
characterized by the effects of direct perceptual evidence in the child's
conception of measure.

The Across Transfer Problem

The across transfer analysis of the learning of measure systems
assumes more than one system of measure is to be learned. Piagetian
developmental psychologists have examined this type of learning but
from a relatively narrow vantage point. The questions have been oriented
toward investigating whether concepts, such as conservation, reversibility,
and transitivity, occur at the same time for two or more measure syStems,
or whether there is a natural order depending upon the type of measure
systems being studied. This type of research is usually labelled with
the descriptor "horizontal d6calage." Examination of studies within
this realm leads to the conclusion that acquisition of these concepts
is specific to a measure system; for example, if a child conserves in
one measure system setting, one cannot assume that the child will conserve
in a different measure system. Second, there appears to be a weak
natural ordering of acquisition dependent upon the type of measure systems.
But very few studies have been conducted that look specifically for
the effects of learning in one measure system on the learning of another.
Parenthetically, it should be remarked that this would be most useful
for curriculum designers and the writers of textbooks and instructional
materials.

One of the few studies that examines the effect of learning in one
measure system on learning in another measure system is Montgomery's
study (1972) of aptitude treatment interaction. Interested in children's
acquisition of area concepts, Montgomery specified aptitude in terms
of the children's ability to learn.concepts related to units of length.
That is to say, the design of ;:he ehe experiment analyzed learner performance
in one measure system in terms of performance within another previously
learned measure setting. Second- and third-grade children were given a
pretest, a brief period of instruction concerning length, and finally,
a posttest concerning length. Based upon performance, the children
were split into two levels. Subjects in each level were randomly
assigned to two different area instructional treatments, one of which
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emphasized unit and iteration while the second did not. For achieve-
ment and retention measures, she reported significant effects due to
treatment (favoring the unit approach) and aptitude but no significant
interaction effects. One of the two levels of aptitude consisted of
children who learned about length in the pretreatment common unit, the
other consisted of children who exhibited but a small amount of change
in performance on the length tasks. A third aptitude group of children
who had the length concepts both before and after the pretreatment unit
had been hoped for, but simply did not exist.

One interpretation of this experiment is that it is a study of
across measure systems transfer. The criterion variables may be
considered from the point of view that they are symptomatic of ease or
efficiency of learning about area (the S set of 'earnings) in terms of
the prior (or P) set of learning about length. The particular attributes
of the P and S sets that were focused upon concerned units and their
characteristics. This is not the standard interpretation of transfer
although it is quite similar to the spirit indicated in Cronbach's .

Issues Current in Educational Psychology (1965). In terms of across
systems transfer, one treatment focused upon the common attribute of
unit. The nonunit treatment as described appears to be a soundly
constructed instructional program that does, indeed, stress the unit
idea by repeated usage of congruent units. But this treatment does
not explore alternatives of using different units to measure the same
region and the comparison of the resulting numbers. The unit approach
focuses upon characteristics of the unit and results of modification
of the unit.

The ANOVA revealed differences in achievement significant at the
0.0001 level. Comparative performance, in terms of raw scores, is
indicated by Figures 2 with the upper curve representing the unit treat-
ment. The I and II indicate levels of aptitude in coping with linear
measure.

Achievement
24

18

12

6

I II
Aptitude

Figure 2. Aptitude treatment interaction
graph from Montgomery (1972,p. 94)
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The retention tests results, given approximately a month later,
paralleled those of the achievement test. A transfer test including
items on numerousness and volume measures was given, but due to poor
test reliability, did not provide interpretable results, (Note that
this is the more traditional treatment of transfer. Perhaps a better
question is to examine transfer to volume in terms of ease and
efficiency of learning in an instructional context.) An interesting
side result was that children in the unit treatment were more inclined
to recording the unit used in assigning the measure than children in
the nonunit approach, even though the matter of recording had received
the same emphasis in both treatments.

Montgomery indicates (in a letter, 1974) that she has used the length
pretests and the unit area treatment in an interesting fashion. Half of
the children in three thirdgrade classes were selected randomly and given
the length pretest. Then two of the classes were taught the unit area
treatment and the third class was given an arithmetic unit. All children
were then given the second length test that had been used in determining
aptitude. Eyeball examination of the raw data indicates the area instruc
tional treatment helps kids in learning about length. The difference in
mean performance for the area treatment groups on the length test was
4.14 and for the arithmetic, treatment group 2.2 with the data suggesting
that the taking of the pretest contributed to the magnitude differences
in the scores on the twenty item tests. This evidence is weakly suppor
tive of attention to transfer in terms of specific concentration on the
attributes shared by two measure systems.

The experiments reported above provide evidence of a potential in
examining the learning in one measure system in terms of its effect on
the learning of instruction in a second. Neither experiment was
designed in terms of transfer although the former provides a relatively
good base for interpretation in terms of ease and efficiency of learning
and, consequently, instruction. The interjection of two instructional
units concerned with the second measure system provides a means of
acquiring insights into the nature and effect of the particular attributes
common to the prior learning set and the subsequent learning set. Clearly,
instruction in length, the prior learning set, was designed to emphasize
the attribute of unit common to both learning sets (Transfer Principle
1). In the same sense, for the unit treatment, the subsequent learning
tasks were oriented in terms of the common attribute of unit (Transfer
Principle 3). The main effect differences reported for aptitude can be
considered as an exemplification of the second transfer principle.
Utilizing two instructional treatments for the second measure system
establishes a setting for identifying operant factors in the second
measure system.

The Developing Mathematics Processes (DMP) materials designed by
the Wisconsin Research and Development Center (Romberg & Harvey, 1974),
seem particularly well designed for experiments concerning effects of
different strategies concerned with units in measure systems. Attributes
of objects that are readily isolated perceptually are examined and
measured with concerted attention given to units.
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The units considered for a given system of measure are of two types:
(a) arbitrary and nonstandard and (b) the standard units. The measure
systems encountered are length, numerousness, time, weight, area, and
capacity. Thus, a convenient context for some productive research is
provided within the setting of a carefully considered sequence and scope
of measure related objectives and activities. One would hope for
studies, comparable to Montgomery's in design, that would be concentrated
on exploring the transfer effect from learning about units and their
properties in the length and area settings to learning in the settings of
liquid and solid volume, time, and weight.

Mathematical analyses of different measure systems reveal several
attributes that are likely candidates for this typs of across measure
systems transfer research. Blakers' Mathematical Concepts in Elementary
Measurement (1967) provides extremely detailed mathematical analyses of
this sort. Given a characterizing measure function, m; a domain space,
D; and a range space of real numbers, R; the following loosely described
attributes are significant mathematically and are shared by many measure
systems:

1. Unit and iteration. A special u CD such that m(u) = 1 can be
defined for most significant measure systems. It allows the "covering"
of any element d CD in the sense paralleled by the Archimedean property
of the range space.

2. Additivity. m (di k) d2) = m (d1) + m (d2) for d1 and d2
non overlapping.

3. Congruence. dl ^! d2 m(d
1
) = m(d

2
).

4. Comparison. d
1

d
2

m(d
1
) < m(d

2
).

These four basic properties are each likely candidatea for the design
of research for the across systems transfer problem. It should, of course,
be noted that they are interrelated in each measure system. The Montgomery
study relating to units would have yielded nonsensical results if the
children had not possessed a sense of the congruence property for the
given units under consideration. But, clearly, transfer studies.can be
designed that give special emphasis to each of the identified attributes.
It should also be remarked that the comparison attribute contains as
related subattributes the domain properties described as subject to
operational definitions by children in the within transfer problem
described earlier.

Each of the transfer principles offers the potential as serving as
an identifier of hypotheses for research. For example, the principle
stating that the differences between prior and subsequent learnings need
to be emphasized suggests the following across system transfer problems.
The measure systems for length and temperature appear to share several
characteristics, but one that is not shared is additivity. If 80°C
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coffee is added to 25°C coffee, it does not start to boil. What is the
effect on the learning of a temperature measure system by,concentrating
on this critical difference? The length and area measure systems each
possess the congruende attribute, but for area the converse statement
is false and for length it is true. What impact on the learning of one
system does emphasis of this difference have, given either order of
encounter with the systems?

A final note is in order about the across systems transfer problem.
Each of the measure systems considered has been simple. That is, length,
volume, area, angularity, and temperature each involves but a single
function. Many of the measure systems that provide understanding and
control of the environment for both the child and the scientist are
complex; in these systems the domain space is a set of ordered n-tuples each
element of which derives from a simple measure system. For many of
these functions, each of the entries in the n-tuple is from a different
measure system (e.g., rate is a function of distance and time). Clearly,
it is possible to design experiments similar in structure to the previously
described across transfer problem experiments. For example, the
structure of the work measure system (foot-pounds) is exactly parallel
to the structure of a heat measure system (British thermal units).
Because of the identical structures of the measure systems, these two
systems could serve as the base for such a research design. However,
designing transfer experiments on such directly analogous measure systems
probably is not as potentially helpful to curriculum designers as the
examination of transfer problems across systems that are not so directly
parallel in structure.

A psychological problem for learners that is quite troublesome is
described with the word centration.. The word refers to the propensity
of the learner to center attention on the perceptually dominant feature
of an object ignoring other salient features. For example, in the com-
parison of occupied volumes, the child may determine his comparative
conclusions by attending only to the heights of the objects under con-
sideration. In a comparable fashion, when dealing with the measure
system for rate, the learner may consider only the effects of modification
of time without considering the effect of a change in the distance
characteristics of the system.

This suggests a model for experimentation in the across systems
model that is a bit different but which may be revealing. Consider two
measure functions, Ml and M2, each of which has a domain that is an
n-tuple. For Ml, all of the domain elements are from elements of the
range of a single measure system. That is:

M1: (Xl, X2 ..... 11:n) ,) R where xi = f(zi) for f a measure function.

For M2, not all of the domain elements are elements from the range space
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of a given measure system but are drawn from different measure systems.
That is:

M2: (Y1, Y2, ...,Yn).4R where yi = fi(zi) and fi ¢ fj

for some i and j.

For example, learner's performance in coping with distance as the product
of rate and time might be compared to their performance in handling area
as a product of length and length. Across transfer studies designed on
this comparative functional structure may reveal interesting aspects
of children'S propensity to centrate. Experiments focusing on centration
in newly encountered measure systems, such as rate, might produce
interesting and productive results if the learner has a base of the some-
what more simple situation of the arguments all coming from the same
domain space. In point of fact, we have little or no evidence concerning
how children learn or conceptualize what we frequently called derived
systems of measure in which the domain is an n-tuple drawn from several
different measure systems. For instance, the Piagetian observations of
how children handle speed and rate reveal that children find difficulty
in these situations but do not indicate the nature of the difficulties.
By using the area and volume functions, with children havihg control of
the multiplicative character of the function, a base for designing
potentially revealing experiments exist.

The across-transfer problem is suggestive of many research studies.
Few 'studies have been conducted in this area. The structures of measure
systems are predictive of the nature of, or models for, such studies. Tbey
do have the advantage of utilizing the findings of the Piagetian-style
developmental research that identifies those operational definitions
possessed by children for domain spaces for each characterizing function.

The Outside Transfer Problem

It is frequently stated that measure is ubiquitous, pervading all
we do in mathematics and science. Within mathematics this is reflected
by the fact that measure concepts are used so frequently as the intuitive
base for instruction for nonmeasure concepts and skills. For example,
measure ideas are popularly selected as the embodiments for instruction
about operations with numbers, characteristics of function, limit
concepts, and the like. But the purpose of using these measure based
embodiments is not to teach about measure; rather, the instruction
is directed toward nonmeasure learning. The purpose of this section is
to consider some of the lacunae in our understanding of how children
use measure concepts and understandings in this outside setting.

The outside transfer problem is closely related to the within
.transfer problem. It differs in that for the within transfer problem
the goal of instruction is measure, that homomorphic linking of conceptions

. of the domain and range space structures. For the outside transfer
problem, the instructional goals are the skills and understandings for
which measure serves as the embodiment. In the case of operations with
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fractions, the measure embodiments provide the examples used by teachers
for an intuitive entry to the concepts and skills for the numbers. It

should be recognized that the domain of discourse shares manycharacter-
istics with the proverbial chicken and egg problem. Which come first,
measure concepts or number concepts? The character of the child's first
encounter with numerousness is in the sense of measure applied to
discrete sets of objects. This has been explored by researchers in a
thorough fashion. The concern of this section is, in particular, to
examine measure related learning problems for number systems in which
teachers will want to use more sophisticated measure systems than
numerousity.

First, consider one of the oft-stated remarks about conversion to
the metric system. A purported advantage of conversion is that learners
will use the decimal system of measure and that emphasis on computation
with vulgar fractions may be cut back in the elementary and middle school
curricula. This is a misleading statement; it obscures some of the
real questions concerning how children acquire computational proficiency
as a result of operating within a measure setting. The significant
questions do not relate to the fact of the metric system's computational
base of decimal fractions. Rather the question should be, "How can the
measure concepts and understandings unique to the metric system be used
to advangage in helping children become more accurate and efficient in
handling decimal fractions?"

Bauer (1974) conducted a study of three different instructional
strategies relating to decimal computation. Her population was 568
seventh-grade students in the 18 classes of six teachers. The three
instructional strategies differed primarily in terms of the definitional
base for decimal fraction and the appeals to that base for the rationale
for the operations. One definitional base was stated and exemplified
in terms of measure on the number line. Another base was the more
standard appeal to the vulgar fractions with powers of ten in the
denominator. The third definitional base utilized place value concepts.
The statistical analysis of the data revealed no significant differences
in performance. But it is interesting to observe that the subjects
had all just completed an extensive unit on common fractions and related
computation. Why was there no superiority derivative from the immediacy
of this experience with fractions? The definitional base utilizing
measure concepts on the number line utilized many of the attributes
of the distance function for rationalizing addition and subtraction.
The multiplication of decimals was provided a rationale based on the
characterizing area function much in the sense of Green's diagram
approach (1969). Although not conceptualized in terms of transfer, the
Bauer study indicates the strong potential for designing instruction
on this base. One must wonder what the results would have been if
instruction had been designed specifically for transfer both when the
children were encountering the basal measure concepts and when they were
dealing with the decimal fractions. Although the experiment did honor
the metric system, it was in the sense of a transfer to metric test
subsequent to the instructional unit. Would it have been wiser to have
developed basic length and area measure properties within a sequence
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involving the metric system in part and then looked for transfer effects
to ,tcimal computation? Or what would have been the outcome of incorporating
metric system concepts and skills throughout the computational instructional
treatment?

Generally, research into the instructional strategies for computation
for numbers other than whole numbers has not attended sufficiently to
the intuitive conceptual bases that provide the rationale for the opera-
tions. In particular, if the rationale is based on measure concepts and
understandings, insufficient attention has been given to the learning
context for the measure concepts and understanding and to the common
attributes of the two learning sets in terms of how the transfer to
number occurs: This is to say, the first principle of transfer is
ignored or relegated to a position of unimportance in the design of the
instructional strategy for computation. Indeed, an exhaustive review
of the literature reveals little research that analyzes the learning
of the basal measurement concepts on which the instruction is grounded.
There is a body of research that attends to the intuitive measure base
and its effect (for example, Green, 1969), but its focus is not in
terms of the nature of the measure base possessed by the learners.

The research chosen for the primary example for this section concerned
computation with decimal fractions. It would have been just as appro-
priate to have selected examples of research concerned with,vulgar
fractions or real numbers. The careful identification of attributes of
the learning of measure concepts and learning within the domain of
number suggests many transfer designed studies. Aptitude treatment
interaction studies have not revealed very much, in this writer's opinion,
for they overlook the processes of the prior learning to focus only on
the product of that prior learning. The payoff in terms of researching
the transfer effects from measure learning to understanding of number
may well be more a function of how the learning takes place than simply
what the child knows. It should be noted that many researchers, but
not all, in mathematics education appear presently to have an aversion
to examining the problems of learning concerned with numbers more complex
than the whole numbers. This is' unfortunate. The problems of how children
relate measure to number is fascinating, and we have yet to develop a
research base for the design of related curricular materials.

Factors Confounding Measure Learning

The purpose of this section is to list some factors that confound
the learning of measure. Some of these relate directly to the transfer
process and have the potential of interference with designing instruction
for transfer.

The word measure has been used in a very restricted sense in this
paper. Except for brief references, such real world measure ideas as
conjured up by words such as metric, English measurement system, ergs,
joules, hectares, coloumbs, and the like have been ignored. This paper
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has discussed measure In the context of the idealized mathematics'
model of real world mea. .ement. In this section, we will specifically
limit use of the word measure to the ideal world of the mathematical
model and the word measurement will signify the nice but messy world of
inexactitude in the real world measuring of the scientist or the proverbial
man-on-the-street. Thus, the word centimeter refers to a measurement
system; th._ word length to a measure system.

The above distinction is important. MeaSUrement is an inexact
observational process concerning attributes of perceptual reality of
the child. But the inexact nature of the observational process and its
refinements have the possibility of confusing the basic idealized
measure concepts that serve the learner as intuitive foundation for
learning about number, for developing geometrical concepts, and for
acquiring_ many other important mathematical ideas. To confuse the
child's operationalizing the additivity concept for the length function
by noting that a 5 inch and 3 inch measurement each has a confidence
interval of 1/2' inch and that errors are additive is regrettable.
But such concepts as relative error, precision, and accuracy are
important. The potential for mutual interference of measure and measure-
ment concepts has not been well worked out, and the impact on learners
has not been established. Presently, the inclination of many textbook
authors appears to be to delay the introduction of a careful treatment
of measurement concepts until the learner is more mature. But the
problem exists. For example, children use rulers that only yield
rational numbefs, even though in the idealized model there is a single
real number corresponding to a pair of points that may be irrational.
This necessarily is somewhat confusing and ambiguous. Clearly, the
ambiguity has the potential of confounding transfer effects to the
detriment of children's learning. It is particularly evident in the
design of some devices designed for teaching measure concepts. One
commercially available device designed for teaching the set of measure
"facts" concerning the angles formed by chords, secants, and tangents
cutting a circle is designed so that the child who reads the scales
carefully is highly unlikely to arrive at the desired conclusions. The
learner may be off by as much 10° in summig his measurements. This is
to say that beyond a certain point, it is critical to establish appro-
priate understandings and distinctions between measurement (as an observa-
tional process) and measure (as an ideal concept in a mathematical
model). But little evidence exists concerning the timing and the means
of establishing these distinctions. The distinction is sophisticated,
indeed, bearing upon one's philosophies of science and mathematics.
But the child must use measurement to generate his perceptual base for
forming concepts.

Another confusing factor in'the child's learning of measure is the
language of measure. For most measure functions, the word used to
identify the function is also used when talking of the range elements
of the function. For example, we talk of the distance function and the
distance between two points. Distance is a number; it is also the
function. But the problem really comes home to roost with angle
measure. For most measure systems we can distingish by word choice
between the range space measure and the attribute of the object being
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measured; segment, length, and distance, have a nice characteristic
clarity in our speech. But how many teachers refer to an angle of
450, meaning either the measure or the angle. The best we can do is talk
in terms of angularity or carefully use angle as a modifier for measure
if referring to the range space elements. These linguistic distinctions
have a potential for confusing children.

The perceptual "stuff" of measurement on which the child bases his
conception of measure is simple for measure systems like distance, area,
angularity, and, to some extent for volume. (Previously, the complexities
of the occupied volume, capacity, displacement volume, multiplicative
volume, liquid volume, and solid volume were addressed.) But, for other
measure systems, the attributes are measured with tools that provide at
best indirect evidence of the attributes being considered. For example,
in coping with mass or weight, the child either (a) reads a scale or
(b) observes whether a balance beam is balanced. In the latter case,
not only is the perceptual evidence removed physically from the object
being weighed, but the child must incorporate evidence of what he does
to the other pan into his perceptual schemata. Consider the case
of temperature; the attribute of the length of the mercury column and the
position of its endpoint on a number scale bear little (no) resemblance
to the attribute of the object under consideration. Thus, we have L-o
different perceptually loaded situations: (a) The objects of concern
are removed or at a distance from the perceptual evidence used by the
learner, and (b) the perceptual evidence used by the learner way have
little "resemblance" to any obvious attribute of the object. The
learning of such measure systems having one or more of these character-
istics may well be enhanced by an across transfer approach to instruction.
But the confusion arises when (a) the perceptual base for the within
transfer approach is confusing the learners and (b) the use of measurement
tools necessarily involves the learner (and the teacher) with problems
of relative error and accuracy.

Retrospect

The focus of this paper has been transfer of learning. Analysis of
the mathematics of measure systems indicates the structures of measure
systems share many commonalities. Of great significance is the homomorphic
character of many measure systems.

The homomorphism of a single measure system defines, in a sense, the
within transfer problem. Previous research into how learners acquire
measure concepts has not given sufficient attention to exploration of
how children form the homomorphic linkage between the domain space and
the range space. Rather, the 'oncentration has been on children's
conception of the domain space. For perceptually complex measure systems,
such as volume-or mass, the limiting of the study of children's thinking
to the domain space is not productive. Shifting the research model to
a homomorphic analysis of transfer in order to examine the incorporation
of number into measure appears to be a productive direction to follow.
Any, examination of the learning of measure is incomplete if it does not

50



42

explore the child's building the homomorphic links between the domain
space and the range space.

If you accept the task of examining the research literature concerning
the learning of measure concepts, you realize little is known except for
the preliminary encounters of children with the more perceptually simple
measure systems of numerousness, length, and area. Much of this
research has been in terms of domain characteristics. The more complex
measure systems, such as volume, mass, rate; energy, and work; have not
been explored.

The more complex systems typically do not yield perceptual evidence
of direct use to the child in building operational understanding of
measure. There is a profound need to explore how children use the common
structural ideas across measure systems to build understanding in the
perceptually complex systems. The base for designing instruction for
transfer exists, but we have not explored the payoffs and pitfalls of
teaching for transfer across measure systems.

The transfer approach has one distinctive advantage in considering
the learning of measure. The tradition of the Piagetian developmental
research is passive. The status of children's conceptions is observed.
This is useful information. But it does not help the teacher decide
what should be done to help a child who is having difficulty or yield
much prescriptive, information for the design of the curriculum. However,
the transfer orientation necessarily incorporates an interventionist
point of view This is potentially useful from both the practical
standpoint of improving the curriculum in the schools and finding out
what operates in children's conceptualization about measure. A
scientist must intervene to tilt a system if critical variables are to be
identified or observed. Static observation alone may overlook a significant
variable. In any equilibrium system, forced perturbation of one charac-
teristic may cause shifts in an undetected but critical characteristic.
A noninterventionist's observational philosophy removes many possibili-
ties for observing perturbations.

Finally, much of the learning about measure is of an incidental
nature in today's schcols. Measure concepts are encountered in settings
where the goal is teaching and learning about number. It is assumed
that measure is intuitive and sufficiently possessed and understood by
the learner to serve as an intuitive embodiment for explaining numerical
operations. This assumption 'should be questioned. Further, the nature
of how children learn and use measure in this outside, transfer setting
needs careful attention.
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Analysis and Synthesis of Existing Research on Measurement

Thomas P. Carpenter

The University of Wisconsin

A fundamental question in the learning of measurement concepts is
whether the conceptual development of measurement in young children
parallels the logical development of the measurement process. The mathe-
matical construction of a measurement operation consists of two basic
steps: premeasurement, establishing empirical procedures for directly
comparing, ordering, and combining elements of some domain of elements
that possess a given attribute; and measuring, defining a measurement
function which assigns a nonnegative real number to every element in the
domain in such a way as to preserve the essential characteristics of the
domain (Blakers, 1967).

Some of the first research to demonstrate that premeasurement con-
cepts are a significant factor in the development of measurement was
reported by Piaget and his associates (Piaget & Inhelder, 1941; Piaget,
Inhelder, & Szeminska, 1960). Their description of the development of
measurement concepts has provided the focus for most of the recent
research on measurement learning. Of greatest interest has been their
description of the development of conservation and transitivity. As a
consequence, most recent studies have dealt with these premeasurement
concepts. Fewer Piagetian studies have considered measuring per se, by
the studies that .have done so provide some fresh insights about learning
measurement concepts.

While Piaget has provided a major unifying influence for measure-
ment research, there is also a diversified collection of studies that
is not based on any well-defined psychology theory. ,This collection
includes (a) a variety of status studies tenting children's skill in
measuring or their familiarity with basic measurement terminology and

(b) a number of studies investigating the effectiveness of various
instructional strategies. Because these studies lack any unifying con-
ceptual basis, it is difficult to assess their total contribution, and
they are only surveyed briefly. The primary focus of this paper is the
measurement research based on the studies of Piaget and his associates.
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Piaget's Measurement Studies

In the discussion of the measurement process, Piaget identifies a
number of significant issues. Foremost is the concept of conservation.
For Piaget et al. (1960) the central idea "underlying all measurement is
the notion that an object remains constant in size throughout any change
in position" (p. 90). Thus, the attainment of conservation and the
corresponding notion of transitivity is the hallmark of the first level
of achievement of measurement concepts. The development of a metric
is further dependent on the synthesis of subdivision and change of position.

Measurement begins when one part A belonging to a whole C is
compared with the remaining parts of the same whole by change of
position (either its own or that of a common measure, used transi-
tively) so that A (or its equivalent) is superposed on these other
parts. This implies that subdivision and change of position are
fused into one single operation and no longer simply complementary.
That operation is unit iteration. (Piaget et 1., 1960, p. 399)

Finally, the development of formal measurement operations is completed
with the onset of the ability to calculate areas and volumes from the
respective linear measures, which is dependent on the development of the
ability to coordinate the measurement of several linear dimensions. Thus,
according to Piaget the conceptual development of measurement concepts
parallels the logical development of measurement operations in that pre-
measurement operations are a prerequisite for the subsequent development
of a measurement function.

Stages of Development

Piaget et al. (1960) divide the development of measurement into four
stages, with the second and third stages each being further divided into
two substages. The earliest stages (I and HA, up to ages of 5 or 6 years)
are characterized by a "wide variety of responses which have only negative
characteristics in common" (Piaget et al., 1960, p. 117). Measurement is
not possible in these stages because space is not viewed as a common
medium containing objects with well-defined spatial relations between the
objects. D,:a to this uncoordinated view of Euclidean space, a preoperational
.hild does not recognize that the distance from A to B must equal the
distance from B to A. Children also believe that the distance between two
points decreases when, an object is placed between them, because some of
the space has been taken up by the solid object.

In Stages I and HA, children do not conserve length, area, weight,
or volume; they rely strictly on one dimensional perceptual judgements.
Length, for example, is judged strictly on the basis of end points.
Undulations and angles in the objects being compared are generally ignored,
and segments with unaligned endpoints are judged to be unequal. Similarly,
area and volume judgements are based solely on the longest linear dimension.
At this stage, children also rely on visual estimates to locate a point
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in two or three dimensional space and to reconstruct a tower of a given
height. In this last task, children do demonstrate some progress from
Stage I to IIA. In Stage IIA, they move the towers closer together to
improve visual comparisons (Piaget calls this "manual transfer"), but
comparisons are still strictly visual, and the different heights of the
bases of the towersis still not accounted for.

In Stages I and IIA, children are completely unable to apply measuring
instruments. In the spontaneous situation described above of reconstructing
the tower, no attempt is made to use measuring instruments. In more
structured situations, like those in which they are given units to measure
a length, some children simply run the unit along the line, making no sub-
divisions into equal units. Others only cover part of the line or partition
it into unequal sections. Thus, they demonstrate no understanding of a
complete covering with a constant unit of measure. Since they lack con-
servation of the moving middle term, there is no transitivity and hence
no operational concept of measurement. This failure to understand the
concept of subdivision into equal units is further illustrated by Stage
I children's difficulty in dividing a cake into two halves or three thirds.
The youngest children forget that a given fraction implies a definite
number of parts and cut the cake into any number of parts. Other children
do not realize that the partition must exhaust the cake and simply cut
out two pieces and leave the rest. Furthermore, they do not recognize
that the s.nn of the fractional parts must equal the original whole.

Substage IIB. In Substage IIB (about 6 to 7) conservation is dimly
perceived, and there is the beginning of transitivity so that some measure-
ment is possible. In constructing a tower of a given height, children
begin to use a moveable middle term. But instead of using one of the
reliable measuring devices available, children use their own bodies,
measuring with the span of their arms or with reference points on their
bodies like the height of their shoulders (Piaget calls this "body
transfer"). By trial and error, children gradually discover that if it
takes more units to cover A than B, then A is greater than B. However,
children fail to understand the importance of the size of the unit and
often count a fraction of a unit as a whole or equate two quantities that
measure the same number of units with different sized units of measure.
Thus, "children of level IIB gradually come to make a number of true
judgments, but then success is the product of intuitive adjustments
and so is lacking in generality" (Piaget et al., 1960, p. 274). In
attempting to locate a point in two or three dimensions, children begin
to measure but only make a single measurement; they still fail to recognize
the necessity of coordinating the measure of all dimensions.

Substage ILIA. The distinguishing characteristic of Stage III is the
onset of operational conservation and transitivity. In Substage IIIA
(7-8 years) the child conserves length and interior area and volume but
not complementary area or occupied volume. In other words, they recognize
the equality of areas or volumes contained within certain boundaries but
do not realize that the complementary area or occupied volume (the amount
Of space occupied by the object in relation to other objects around it)
must also be equal.
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Stage IIIA children can apply a moving middle term transitively but
only if it is as large as or larger than the original. Thus, they can
accurately reconstruct a tower of a given height by marking off the height
on a stick longer than the tower is tall but cannot reconstruct the tower
measurement with a smaller unit. Operational measurement requires the
synthesis of change of position and subdivision. In this stage, children
possesi both individually. They conserve and thus recognize that change
of position does not alter quantities. Similarly, they understand composition,
that the whole is the sum of the parts and is greater than any of the parts.
However, these relations are qualitative, derived from the part-whole
relation not from the relation of one part, to another. Thus, Stage IIIA
children can conserve and therefore are capable of comparing units of
measure. They also recognize that a quantity is the sum of its unit
covering; however, these ideas have not been fused, and measurement is not
yet operational. In Stage IIIA, children continue to ignore the size and
completeness of units of measure.

Substage IIIB. In Substage IIIB (8-10 yers), change of position and
subdivision are coordinated and measurement through unit iteration is
possible. At this stage, children can measure lengths or areas by successively
applying units to cover the length or area. Stage IIIB children can also
successfully locate a point to two or three dimensions. In Stage IIIA,
they begin to recognize the need for two or three linear measures, but
a great deal of trial and error is required. In Stage IIIB, calculation
of the necessary measures is immediate.

What is lacking at Stage IIIB is the ability to apply this multi-
dimensional awareness to calculate areas and volumes from the respective
linear dimensions. This results in an interesting dichotomy. Up to this
point, the development of linear, area, and volume measurement concepts have
occurred concurrently. Even at this stage the concept of a unit covering
is applied equally to segments and areas. However, in Stage IIIB, conser-
vation is generalized to cover complementary area but not the parallel
concept of occupied volume. Piaget's explanation for this is that the
concepts of complementary area and occupied volume are dependent on an
operational understanding of measurement. At Stage IIIB, measurement
exists only when congruence can be established directly, i.e., only when
the unit covering can be physically applied. Area can be measured directly
by successive coverings of unit squares, but volume cannot because the
interior is inaccessible. Therefore, the concept of complementary area
develops before the concept of occupied volume.

. Stage IV. Finally in Stage IV (beginning at 11-12 years) with the
onset of formal operations, the development of measurement is complete.
Now children calculate areas and volumes from the respective linear
dimensions and conserve occupied volume. In Stage I:Iii, children possess
many of the prerequisites for area and volume calculations. They under-
stand measurement through unit iteration. They can coordinate linear
measurements in several dimensions to locate a point in space, and they
are capable of the necessary arithmetical computations. What they lack,
however, is the notion that space consists of an infinite and continuous
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set of points. To calculate an area, children must reduce the area to
an infinite set of lines infinitely close together. Until the stage of
formal operations (Stage IV) children still believe that space is com-
prised of a finite number of elements. For this reason, area and volume
calculations are not possible until Stage IV, when concepts of infinity
and continuity devel6p.

Discussion

It is interesting to note a trend that occurs throughout the develop-
ment of measurement concepts. In the transitional stage before a concept
appears in a completely operational form, it is frequently approximated
in a preoperational form. For example, at Stage IIB, a type of transi-
tivity in the form of body transfer precedes operational transitivity.
Conservation also occurs on a trial and error basis at this stage. It
also Seems that requisite concepts may appear individually before they are
fused into operational measurement. For example, a child understands
both superposition and change of position individually at Substage IIIA
but cannot integrate them to achieve the notion of unit iteration until
Stage IIIB.

The above summary has frequently referred to the development of
"operational" concepts of measurement. For Piaget, the operation of measure-
ment is distinct from the skills of measuring. For measurement to be
operational, the overt actions of the measurement, process must be
internalized into cognitive actions that are an integral part of a definite
organized structure. For Jnstance, an operational concept of the
measurement of length cannot exist in isolation, apart from related
measurement and number concepts. The development of measurement of
length is mutually dependent on these related concepts and cannot be
learned in an operational sense without the concurrent development of
these concepts. Measurement operations must be generalized and reversible.
The components of the process can be analyzed and synthesized so that a
child can assess the consequence of various alterations in procedures.
Thus, operational measurement requires not only that a child can apply a
proper sequence of steps to measure, but he must be able to do so without
slavishly following ritualized measuring procedures.

Studies of Premeasurement Concepts

Piaget's description of the development of premeasurement concepts
has been the subject of a wide variety of studies which attempt to repli-
cate, disprove, extend, or explain his conclusions. These studies cover
the development of the major concepts of conservation and transitivity
and deal with three basic issues: (a) validating the existence of indi-
vidual cognitive operations and describing the stages of their develop-
ment, (b) validating or establishing the relation between different
cognitive skills, and (c) identifying the nature of the transitions
between stages of development. The first issue Ilas led to a number of
replications or studies that have systematically varied some of Piaget's
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procedures and materials. The second has been attacked by studies in
which a series of different tasks are administered to the same sample of
children to establish a developmental hierarchy among them. The third
has generally been dealt with through training studies. A fourth type of
study that potentially can deal with all three questions involves the
application of information processing techniques to describe and simulate
Piagetian structures.

Research Methodology

Methodological variations create an almost overwhelming obstacle in
attempting to draw consistent conclusions from the 1.-..sults of a great variety
of stud:.....s. Differences in the criteria for succ. ss, the use of verbal or
nonverbal procedures, presence or absence of confli^,', material or protocol
variations, and population differences make it practically impossible to
equate individual studies. One result is that it is all but impossible to
establish reliable age norms for the emergence of a given operation. There
are also some serious problems in identifying the sequence of acquisition
of different logical operations and in evaluating the effect of training.

Conservation

Research on conservation and its theoretical implications has been
discussed in detail elsewhere (Beilin, 1969, 1971; Brainerd & Allen, 1971;
Wallach, 1963; Wallach, 1969), so it will be treated summarily in this
paper. Piaget's description of the development of conservation has
generally been confirmed using a great variety of experimental procedures,
materials, and types of transformations. Although the mode of assessment
significantly affects the level of performance (George, 1970; King, 1971;
Sawada & Nelson, 1967; Shantz & Smock, 1966; Stone, 1972; Uzgiris, 1964),
the general pattern of development of conservation appears to be consistent
across a great variety of stimulus situations. Examples include perceptual
illusions (Murray, 1965), numerical or perceptual distractors (Carpenter,
1975), the presence or absence of transformations (Beilin, 1964), or the
use of pictures instead of physical materials (Murray, 1970; Shantz &
Smock, 1966).

From the perspective of the development of measurement concepts, one
of the more interesting conservation studies has been reported by Beilin
(1964). Using a device called the Visual Pattern Board, which displays
a screen laid off in a 12 x 12 matrix of 2 inch squares, Beilin presented
children from kindergarten through fourthgrade with different pairs of
figures. Although children had no difficulty recognizing that two
patterns with identical configuration had the same area and that a
matching pattern with one square added or Subtracted was not equal in
area to the standard, they had significant difficulty in recognizing that
two patterns with different configurations had equal areas. Beilin
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concluded that these errors could not be attributed to language difficulties
since almost all children demonstrated an understanding of "equality" and
"inequality" when presented with identical figures or figures actually
differing in area. This conclusion is of questionable validity since
children who incorrectly equated the terts "area" and "congruence" would
give the same set of responses. However, this study does provide an
example of how typical conservation errors generalize to certain measure-
ment situations.

The sequence of development of conservation operations. One of the
more intriguing aspects of Piaget's theory is the developmental hierarchy
of tasks involving common operational structures. It would seem that
operations with the same logical structure would transfer quite readily
from one situation to another. However, this is not the case. Piaget
and Inhelder (1941) propose a developmental hierarchy in which conserva-
tion of mass is attained at ages 7-8, conservation of weight at ages 9-10
and the conservation of volume at ages 11-12. This decalage has been
substantiated by a number of subsequent investigations (Bat-Haee, 1971;
Elkind, 1961; Hermeier, 1968; Uzgiris, 1964).

Length and area concepts, on the other hand, purportedly develop
simultaneously (Piaget et al., 1960). In this case, the supporting
evidence is not as clear. The results of a study by Kosanovich (1972)
tend to support this conclusion, but Beilin and Franklin (1962) and
Lovell, Healey, and Rowland (1962) found the development of length con-
cepts preceded the development of area concepts. At this point, one
would have to conclude that the results are equivocal. Furthermore, it
may be very difficult to validate the length-area hierarchy or lack
thereof. In the case of mass, weight, and volume, the age spans are sub-
stantial enough to make the relative performance of individual items
fairly stable in spite of possible experimental variation. It appears
that, even if there is some sort of hierarchy for length and area, it is
not of this magnituda. Since it is exceptionally difficult to generate
identical transformations for length and area, any results in this area
may be contaminated by stimulus variation making it difficult to identify
the relative effect of length and area concepts.

Training Studies. Another fundamental problem in cognitive develop-
ment is to identify the nature of transition from one stage of develop-
ment to the next. Piaget has attempted to describe a general theory of
cognitive development which accounted for transitions between stages,
but most of his early research focused on individual children performing
individual tasks and provided little empirical support for his theories
about the nature of the developmental process. Many of the recent studies
have focused on the acquisition of cognitive structures by considering
the effect of different training procedures. For a more detailed discussion
of this literature, the reader is referred to reviews by Beilin (1969, 1971),
Brainerd and Allen (1971), and Wallach (1969).
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Beilin (1971) identifies three generations of training research. In
the first generation, studies were designed to substantiate basic compo-
nents of Piaget's equilibration model. One group of these studies attempted
to induce conservation through cognitive conflict using either deformation
or addition/subtraction (see for example Beilin, 1965; Smedslund, 1961;
Smith, 1968). Other studies based on Piagetian theory relied on reversi-
bility as the major training device (Brison, 1966; Murray, 1968; Smith, 1968).

The second generation of training studies were based on the hypothe-
sis that Piaget's stage theory is overtly rigid in the limitations it
places on cognitive development. A number of these investigators belic.ie
that the acquisition of logical structures can be accelerated and reject
the equilibration model as the sole explanation for their acquisition. ,

They do not accept, for example, that reversibility and compensation are
the essential mechanisms leading to conservation. Instead, these studies
focus on training children to attend to relevant attributes and disregard
or ignore misleading perceptual cues (Gelman, 1969; Kingsley & Hall, 1967;
Miller, 1973; Romberg & Gilbert, 1972). Other second generation studies
used verbal rules (Overbeck & Schwartz, 1970; Smith, 1968) while others
used a multiplicity of techniques (Owens, 1975; Steffe.& Carey, 1972).

One of the more interesting studies in the learning set framework
that has some direct implications for the study of measurement is reported
by Bearison (1969). He used measurement procedures, counting the number
of beakers containing two quantities, to significantly improve performance
on liquid conservation tasks. Furthermore, the effects of training
transfered to area, mass, quantity, number, and length and were maintained
over a seven month period.

Studies of this second type continue to be a major force in Piagetian
research. However, there is a third generation of studies whose objectives
are different from the other two. The aim of these studies, which are
conducted by the Genevans themselves, is to investigate the psychological
mechanisms that underlie the transitions between stages (Inhelder, 1972;
Inhelder & Sinclair, 1969).

Based on his review of current training researe on logical operations
Beilin (1971) reached the following conclusions:

In sum, what these newer studies lead the Genevans to
conclude is that the development of operativity is malleable
only within the limits imposed by the nature of development.
They assert quite vigorously that preoperative children do not
acquire true operativity even with training. Although learning
may accelerate development, acceleration is limited by the condi-
tions of assimilation and children assimilate less of this
learning in earlier stages of development. Although the posses-
sion of an elementary invariant (e.g., conservation of number)
is a prerequisite to success at more advanced operative stages,
the possession of a structure in one field does not lead easily
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to the acquisition of another. In fact, it may not lead
to progress in another field at all. Further, language is
but an instrument, and learning capacity is not provided
by that instrument. Learning then, is subordinate to the
laws of development, which itself follows laws that are
both logical and biological. (Beilin, 1971, p. 101)

Although contrary evidence exists, virtually every type of training
procedure has been able to accelerate the acquisition of conservation.
However, although training can accelerate performance for a given
operation, the specific mechanisms that lead to conservation are still
not known. Wallach (1969) argues that such Piagetian notions as
reversibility and compensation do not sufficiently explain the
development of conservation, and the research reviewed by Beilin
does not substantiate the conclusion that a child must be active
in conflict creating situations.

One unifying view is offered by Brainerd and Allen (1971). Based
on the studies that they reviewed, they concluded that the distinguishing
characteristic of successful training studies was that reversibility was
inherent in all their training procedures and was absent in all the
unsuccessful studies. They maintain that even those studies that do
not specifically train for reversibility (e.g. Gelman, 1969) actually
demonstrate either overtly or covertly the inverses of specified operations.
This is an interesting observation, and one that would give some struc
ture to the divergent set of training studies. But more investigation is
needed into the specific role of reversibility before this hypothesis can
be given much weight. Although it is possible to identify the reversible
operations in the Gelman study, one has to stretch the point to believe
that they are the factor that is responsible for the development of
conservation. Reversibility also does not seem to be the central mechanism
in the successful Bearison (1969) study or the study reported by Inhelder
and Sinclair (1969) and reversibility does not account for successful
training of transitivity (this is discussed later). In any case, it
is an interesting hypothesis that warrants further systematic investigation.
But at this stage it is probably best to stick to Beilin's conclusion that
there is little evidence for the preeminence of any single set of training
procedures.

Another of Beilin's (1971) conclusions is that virtually no method
is effective with very young children. This leads to the hypothesis thit
training does not create new or different logical operations but simply
extends the domain of already existing operations. No learning is likely
to occur if the concepts to be learned are outside the operational domain
of the children. Thus, conservation training does not make conservers,
it simply teaches them to extend their knowledge of conservation to the
testing situation. In the terminology of the Genevans, learning only
accelerates development; it does not initiate it.

Virtually all training studies have found that trained conservers
can transfer their knowledge of conservation to novel materials that were
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not used in the training procedure (specified transfer). Nonspecific
transfer (e.g., transfer of training on length to area) has been more
difficult to achieve, although examples do exist (Bearison, 1969; Gelman,
1969). In spite of these few exceptions, there seems to be relatively
little transfer between Piagetian operations, both for trained conservers
and for natural conservers. Why operations do not generalize more readily
to different perceptual situations is one of the puzzling aspects of
Piasetian research, especially given the preeminence of the logical opera-
tions in the theory.

Transitivity

Transitivity studies have been even more vulnerable to methological
variations then conservation studies. As a consequence the age for the
development of the concept of transitivity has been placed as early as
4 years (Bailey, 1971) and as late as 8 years (Smedslund, 1963b).

Attempts to eliminate possible task ambiguity by pretraining (Bailey,
1971) or using nonverbal or, operationally defined assessment techniques
(Braine, 1964) have generally identified an earlier development of transi-
tivity than traditional studies that relied on verbal techniques (Piaget
et al., 1960; Smedslund, 1963a, 1963b, 1964). It has also been found
that providing memory aids significantly increases the number of transitive
inferences (Roodin & Gruen, 1970), which possibly implies that some chil-
dren who are capable of making transitive inferences fail to do so because
they forget the relevant quantitative relations. Research by Bryant and
Trabasso (1971) also indicates that failure on transitivity tasks may
result from forgetting the premises upon which the transitive inferences
is based. An extension.of this study by Riley and Trabasso (1974) indi-
cates that learning both A is greater than B and B isjess than A signifi-
cantly increases retention of the relations upon which the transitive
inferences are based and therefore increases performance on transitive
tasks. However, the hypothesis was raised that subjects in these studies
may attain a solution without using a logical transitive inference by
encoding the information into an ordered spatial array and solving the
problem by internally scanning the array.

A classic debate between Braine (1959, 1964) and Smedslund (1963b,
1965) revolved around assessment techniques and exactly what constitutes
evidence of transitivity. In general, many of the studies which have
identified the earlier development of transitivity are vulnerable to charges
of accepting pseudotransitive judgements. On the other hand transitivity
failures in studies of Smedslund (1963a, 1963b, 1964) or Youniss and Murray
(1970) possibly result from specific task ambiguity or complexity.
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Although assessment issues have not been resolved, it appears that
a major source of variation results from the presence or absence of
conflicting perceptual cues. Many children who seem to correctly apply
the transitive property of length in a neutral situation where there is
no conflict fail to do so in the presence of a Muller-Lyer illusion
(Divers, 1972; Jones, 1969; Trenary, 1972). The evidence seems to suggest
that the ability to apply the transitive property exists at various levels.
k child first learns to apply the transitive property in simple situations
without conflict but is not immediately able to apply it in more complex
situations or situations involving conflict.

Some caution must be exercised in assessing transitivity in the
absence of perceptual conflict. In order to be classified as possessing
the transitive property, it seems reasonable that a child should be
able to identify situations where the transitive property does not apply
(e.g., a < b, b > c) as well as apply it when it does. Bailey (1971)
found that younger children have more difficulty identifying nontransitive
situations than in making transitive inferences. This seems to indicate
that some sort of pseudotransitivity is a significant danger in the
absence of perceptual conflict, and experiments should guard against it
by including a variety of transitive and nontransitive tasks in assessing
the presence of transitivity.

Conservation-transitivity. Identifying the sequence of development
of conservation and transitive operations seems to be a function of how
transitivity is defined. Piaget and Inhelder (1941) proposed that con-
servation and transitivity develop synchronously. However, with the
exception of a study by Lovell and Ogilvie (1961b) most if the initial
replications found that conservation develops before transitivity
(Koolstra, 1964; McManis, 1969; Smedslund, 1961, 1963a, 1964; Steffe &
Carey, 1972). These studies, however, have been criticized by Brainerd
(1973a) for failing to equate the relative sensitivities of the assessment
tasks. Each of the studies employed perceptual illusion in the transitivity
tasks. Using tasks that did not involve perceptual illusion, Brainerd
(1973b) found that the development of transitivity precedes the development
of conservation. It is not clear that Brainerd's procedures are any more
equitable than the others, since the conservation tasks involved perceptual
illusion while the transitive did not. At this point, the most reasonable
conclusion seems to be that the sequence of development appears to depend
on what evidence one requires for the respective operations. If one
compares the standard conservation tasks to the weaker definition of
transitivity, then it appears that transitivity develops earlier. If
one insists on stronger criteria for transitivity, then it appears that
conservation develops earlier.

Training studies. The results of transitivity training studies do
not depart significantly from those of conservation training studies.
Brainerd (1974), Owens (1975), and Smedslund (1963a) induced gains in
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transitivity through training. In fact, Brainerd (1974) and Owens (1975)
both found that for a given sample of children training in transitivity
was more successful than training in conservation. These results
conflict with the results of a study by Garcez (1969), who found that
no subjects trained in transitivity alone attained operational leels
while 28 percent trained in conservation alone and 24 percent of those
trained in both gave operational responses for the trained operations.

As with conservation, success in achieving transfer to new operations.
has been limited. Brainerd (1974) found that training in transitivity
of length transferred to transitivity of weight. However, neither he nor
Garcez found significant transfer from transitivity training to conser-
vation tasks or vice versa. Steffe and Carey (1972) also found no signi-
ficant transfer between conservation training and performance on transiti-
vity tasks, and Johnson (1974) found no evidence of transfer from classi-
fication and seriation training to either conservation or transitivity.

Only one study (Inhelder & Sinclair, 1969) reports success in achieving
transfer between different logical operations. They trained children to
conserve weight by confronting them with the discrepancy between their
predictions and the actual outcomes of weighing and by asking them to
establish the relative weights of different objects. Eighty-six percent
acquired conservation of weight, and 64 percent of those who acquired
conservation were capable of performing transitive operations. There is
one significant factor in this study that the Genevans conclude is
responsible for their success. All children started from a true operational
level in that they were able to conserve liquid quantity. Thus, the
training accelerated the generalization of established operations but did
not initiate the development of new operations.

Until this study has been replicated, these results should be regarded
with some caution. The Genevans generally use a small, select sample of
subjects and do not exert rigorous experimental control. In this study,
they failed to pretest for transitivity. If transitivity preceeds conser-
vation, as hypothesized by Brainerd, then many of the subjects in the
study may have attained transitivity prior to instruction and therefore
did not learn it as a result of their conservation training. It is also
possible that their training included some practice in transitivity. It

would be premature to conclude that conservation training readily transfers
to transitivity, even with children who start the training at established
operational levels. On the other hand, the Genevan procedures involved
more intensive individualized training than most training studies have
employed. It is possible that the reason for the general lack of success
in achieving transfer is that subjects in most studies have not been
trained to a genuine operational level.

Information Processing

A recent development in the study of cognitive development has been
the application of information processing techniques to describe and
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explain Piagetian operations (Baylor, Gascon, Lemoyne, & Pothier, 1973;
Klahr & Wallace; 1970). Instead of analyzing behavior in terms of the
logical and algebraic properties of the problem, the approach is to
analyze the information processing requirements of the task. In other
words, behavior is described in terms of the subroutines a child would
need to apply in order to perform a given task, which is analogous to
the compilation and execution of a computer. This involves (a) encoding
external stimuli, (b) assembling task specific routines from a repertoire
of fundamental processes, and (c) executing the task specific routines.
This not only forces the programmer to develop an explicit description of
the behaviors involved in each task, but some sort of analysis on the
demand of subroutines may provide an indication of the level of difficulty
of each task.

Baylor et al. (1973) applied these techniques to analyze the problem
of seriating weights. They videotaped three children in different stages
of development of seriation concepts. A detailed protocol analysis of
their responses was compiled, and a computer was programmed to simulate
their behavior. They concluded that for the seriation task intellec ual
development is related to (a) progressive sophistication in structuring
the environment, (b) better use of memory, (c) span for drawing inferences,
and (d) initial conception of what seriation is.

To test the feasibility of an information processing approach, Baylor
and his associates conducted a second study. By holding the information
processing requirements of the tasks isomorphic, they found that the
well known dgcalage between seriation of length and seriation of weight
disappears. They interpreted these findings as support for the validity
of an information processing approach to the analysis of cognitive
development.

Measurement Stage

The literature on the development of numerical measurement processes
is not as abundant as the literature in premeasurement processes, and
studies of how children learn to calculate with area and volume formulas
are virtually nonexistent. Many measurement tasks have never been repli
cated outside Geneva. Since Piaget himself admits that the results of
some measurement tasks are influenced by school curricula, one must accept
his description of the advanced stages of the development of measurement
concepts with some caution. This is especially true given the Genevan's
lack of rigorous experimental control, their small samples of subjects,
and their tendency to extrapolate extensively on the basis of limited
empirical evidence.

There are two major groups of studies dealing with the development
of measurement concepts. First, there are studies that attempt to validate
Piaget's proposed hierarchy. Second, there is a variety of studies dealing
with children's understanding of the concept of a unit of measure.
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Validation Studies

Four studies have attempted to validate Piaget's proposed hierarchy
of measurement concepts by administering a collection of measurement and
measurement related tasks to the same set of children (Andrejczak, 1972;
Lovell, Healey, & Rowland, 1962; Needleman, 1970; Wagman, 1975). Although
each study identifies oome minor variations, they generally found no
radical departure from Piaget's proposed sequence of development. These
studies, as well as studies by Lovell and Ogilvie (1961a) and Lunzer (1960),
also confirmed that Stage IV operations are not attained until at least
11 or 12 years of age.

One of Piaget's conclusions that has not stood up under further in-
vestigation involves the relation of spatial and measurement concepts.
As noted above, Piaget believes that area and volume calculations are
not possible until children recognize that space'consists of an infinite
and continuous set of points. This hypothesis was not supported by the
studies of Andrejczak (1972) and Lunzer (1960).

The Concept of a Unit of Measure

The 'unique feature of the measurement process that distinguishes
it from simply counting is the unit of measure. In assigning a number
to a set, the units are the individual elements of the set. However,
in the measurement process the individual units that are counted may not
be distinguishable, and different units may be used to measure the same
quantity. This second feature of units of measure has been the subject
of a variety of studies. There are three studies that describe the

,difficulties children encounter in dealing with different units and
three excellent training studies involving measuring unit concepts.

The first study (Carpenter, 1975) employed a series of conservation
and measurement tasks in which children were provided both measurement
and visual cues regarding the relationship between two liquid quantities.
In some tasks children had to focus on the visual cues; the liquid was
in identical containers and was measured with different units. In others
the same unit was used, so children had to focus on the numerical cues
since the visual cues were misleading.

This study found that, contrary to earlier hypotheses, virtually
all first- and second-grade children respond to numerical measurement
cues at least as readily as to perceptual cues. However, the majority
still center on a single dominant dimension, numerical or perceptual
depending on the problem situation. This leads to a number of incorrect
judgements. For example, when two quantities in identical containers are
measured with different units, children abandon the valid visual cues and
compare the quantities strictly on the basis of the number of units each
measured. It is interesting that there is no significant difference in
difficulty between this problem, in which the distracting cues are
numerical, and the traditional liquid conservation problem, in which the
distracting cues are visual. On the other hand,' problems in which the
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liquid is measured into different shaped containers using the same unit
of measure are significantly easier than the traditional conservation
problem. In other words, appropriate numerical cues are attended to even
more readily than appropriate visual cues. In fact, most first- and second-
graders can use appropriate measurement cues that follow distracting visual
cues. This was demonstrated by the fact that almost all subjects could
correctly identify the relation between quantities in different shaped
containers that were subsequently measured with a single unit. These
results seem to imply that first- and second-grade children do naturally
attend to the results of measurement operations, and measurement operations
used appropriately may facilitate conservation judgments.

Although the subjects could operate with selected measurement skills,
they had considerable difficulty dealing with the compensating relation-
ship between unit size and the number of units measured. In the problems
discussed, the greatest difficulties occurred when quantities were measured
with different units of measure. This type of problem was significantly
more difficult when the larger unit was not visually identifiable. In

other words, being able to see the compensating relationship between the
unit size and the number of units was a significant factor that influenced
the responses of over 10 percent of the subjects tested. By far the mo.,t
difficult task was to determine the relation between two units by observing
for each unit the number of units in a given quantity.

The results of this study indicate that first- and second-grade chil-
dren have considerable difficulty dealing with the unit size-number of
units relationship. However, a subsequent investigation (Carpenter &
Lewis, in press) revealed that although they may have difficulty applying
their knowledge, many first- and second-graders do recognize that a compen-
sating relationship exists. A significant number of subjects who failed
the above measurement problem in which equal quantities were measured with
equal units could successfully predict that a quantity measured with
the larger unit would measure fewer units than an equal quantity measured
with the smaller unit. Thus, it appears that children understand that
such an inverse relation exists before they are able to generalize this
knowledge to situations involving direct conflict. This situation corre-
sponds to the case of transitivity, in which it was also concluded that
transitive operations do not immediately generalize to conflict situations.
Since the understanding of compensation precedes the ability to deal with
it in conflict situations, it is difficult to account for its acquisition
through any sort of measurement experience.

Another study which tested first-, second-, and third-grade students'
ability to deal with different units is reported by Bailey (1974). He
administered four different tests in which subjects were asked to compare
the length of two polygonal paths. In one test there was an equal number
of segments in each path, but the segments in one path were longer than
the segments in the other. The second test involved an unequal number
of ccngruent segments. In the third, one path had longer but fewer
segments. In the fourth, the segments in both paths were equal in number
and length. The results and procedures are reported somewhat sketchily,
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which make it difficult to establish the criteria used to reach the
given conclusions. But it appears that children had a great deal of
difficulty in coordinating the number of units with the length of the
units in establishing the relative length of the polygonal paths. In
fact, only 3 of 90 subjects (all thirdgraders) used both dimensions
in establishing the length relation between the two paths. The most
difficult task was the third, in which no valid comparison was possible.
Bailey also concluded that transitivity was a prerequisite for successful
completion of the tasks.

Training studies. Some of the most interesting training studies
have been conducted by the Genevans. The unique feature of their train
ing procedures is that they are conducted in a clinical, setting with
careful assessment of each subject's stage of development and detailed
observation of the precise nature of the effects of training. Although
these procedures aglow a great deal of subjective judgment on the part
of the experimenter, they provide some insight into the exact mechanisms
of learning rather than simply observing that some learning occurred.

One particular study that has been widely reported (Inhelder, 1972;
Inhelder & Sinclair, 1969; Sinclair, 1971) has profound implications for
instruction in measurement operations. The learning procedure the
Genevans employed involves leading a subject who has already acquired a
given operational structure to develop a new structure which is normally
acquired later. Since number conservation is acquired two to three
years earlier than length conservation, it was hypothesized that elemen
tary concepts of linear measurement could be facilitated by exercises
in which numerical operations could be used to evaluate length.

The experiment required subjects to construct lines out of match
sticks that are the same length as figures constructed by the experimenter.
The difficulty results from the fact that the experimenter's matches were
longer than the subjects' matches (in the ratio 7:5). Three situations
were presented in the sequence illustrated in Figure 2. The three situa
tions remained in front of the subject. After he had completed his first
three solutions, he was asked to give explanations and eventually to
reconsider, earlier solutions.

All subjects, mean age six years, had passed a pretest of numerical
conservation and had failed a pretest of linear conservation. On the
posttest 35 percent made no progress, 37 percent made some progress,
and 28 pe-rcent gave correct answers and justifications for all items on
the posttest.

Most interesting, however, is the description of the learning process
and the various stages of development. Subjects who showed no progress
centered on a single dimension. If they were asked a length question or
provided with length cues as in situation 1, they would center on length.
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Problem 1

Problem 2

Problem 3

Figure l. Conservation training problems.
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If asked a number question, they would center on number and ignore length.
There was successive application of two distinct systems, and these sub-
jects saw no contradictions in their responses.

In the second stage evaluation schemas seemed to be present simulta-
neously. In this stage, subjects were not satisfied with either a purely
numerical or linear solution and turned from one solution to the next.
However, they were not capable of a new solution that accounted for the
other two. Thus, although they were aware of the contradiction they could
not resolve it.

In the third stage some attempt was made at integration, but the
result was an inadequate "compromise solution." Some subjects broke a
match so as to have the same number and still not have a path that went
beyond. Others ignored the instructions and constructed a nonlinear path.

In the fourth stage the different schemes were integrated and co-
herence was attained. Subjects recognized that you need more matches
when they are smaller and could use the results of situation.3 to correct
the solutions in situations 1 and 2.

Thus, the application of already acquired numerical operations can
be used to facilitate the acquisition of spatial measurement. But complete
acquisition is a very long and difficult process, even with intensive
clinical training. The Genevans have concluded that the conflict result-
ing from the misinterpretation of misleading cues is the mechanism that
leads to operational measurement. Furthermore, it is the subject's
active effort to discover compensatory and coordinating actions and not
the visual results of the experiment that leads to higher order structures.

Another study that investigated how the concept of a unit affects
children's learning of measurement concepts is reported by Montgomery
(1973). This study was an aptitude-treatment interaction study which
examined the interaction of second- and third-grader's ability to learn
unit of length concepts with two treatments based on area and unit of
area concepts. Aptitude was measured using a teach-test procedure which
partitioned subjects on their ability to learn to compare two lengths
measured with different units. Subjects were randomly assigned to one
of two nine-day instructional treatments on measuring and comparing areas.
The difference between the treatments was the emphasis placed on the unit
of measure. In one treatment, subjects always measured with congruent
units and compared regions covered with congruent units. In the other
treatment, subjects measured with noncongruent units and compared regions
covered with different units. On both a posttest and a retention test,
the treatment that used different units was significantly more successful
in teaching children to assign a number to a region (measure) and to com-
pare two regions using their measures. However, there was no significant
difference between the two treatments on a transfer test that included
problems involving measurement with different units, and no significant
interactions were found between aptitude levels and treatments.
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These results together with those reported by Inhelder and Sinclair
(1969) imply that conflict induced through measuring with different units
is a facilitating mechanism in learning measurement concepts. Montgomery's
study seems to imply that even children who do not readily grasp the inter-
action of the unit size and the number units measured benefit from the con-
flict that the use of different units induces. Using multiple units may
not lead to an understanding of the unit size-number of units relation-
ship, but it seems to facilitate the development of other measurement
concepts.

The Genevans studied unit concepts in a clinical setting. Montgomery
used a more traditional classroom instructional setting for her training
session. Gal'perin and Georgiev (1969) report the results of a study in
which the entire kindergarten mathematics curriculum was based on the concept
of a unit of measure. Their hypothesis was that the traditional emphasis
on number concepts incorrectly characterizes units as discrete entities.
By introducing number as a property of sets, the traditional curriculum
induces an orientation that leads to a number of basic.misconceptions.

To test their hypothesis, they administered a series of measurement
problems to the "upper group" of a Soviet kindergarten. They concluded
that young children who are taught by traditional methods lack a basic
understanding of a unit of measure. They do not recognize that each
unit may not be directly identifiable as an entity and that the unit it-
self may consist of parts. They are indifferent to the size and fullness
of a unit of measure and have more faith in direct visual comparison of
quantities than in measurement by a given unit. This same set of items
has been administered to a group of American first-graders (Carpenter,
1971). Although some conclusions were modified based on an additional
set of items and differences in interpretation, the general results were
confirmed for American first-graders.

On the basis of this study, Gal'perin and Georgiev devised a program
of 68 lessons that focused on measurement concepts and systematically
differentiated between units of measure and separate entities. The
lessons were divided into three parts. The first part dealt with form-
ing a mathematical approach to the study of quantities. This section
focused on replacing the habit of direct visual comparison with systematic
application of measuring units. Appropriate units for measuring different
quantities were identified and measuring skills were studied directly,
with special attention directed to the deficiences identified in the
pretest. A variety of units was used, including units consisting of
several parts (two or three matches, spoons, etc.) or some fractions of
a larger object (half a mug or stick). All of these concepts were pre-
sented without assigning numbers to the quantities.

It was not until the second part that the concept of number was
introduced. Thus, Gal'perin and Georgiev introduced most of the basic
measuring skills and spatial concepts before they introduced numbers.
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Note that this sequence completely reverses that described by Inhelder
and Sinclair. In the third part, the inverse relationship between
the size of the unit and the number of units was introduced.

Although the investigation was not conducted with strict experi-
mental controls, the students who participated in this program showed
striking gains over the performance of the previous year's students.
Whereas fewer than half the students in the previous year could answer
most of the items on the measurement test, performance was close to 100
percent for the experimental group. Since experimental and instructional
procedures are described only briefly, it is difficult to document the
exact nature or cause of the gains. It may be that the treatment simply
sensitized the children to what the experimenter was looking for in the
measurement test. On the other hand, the gains are so striking and in-
volve such fundamental concepts that this study is worth serious
consideration.

Surveys of Measurement Knowledge and Skills

Earlier in this paper a distinction was made between understanding
measurement concepts and familiarity with measuring skills. The research
that has been surveyed to this point has dealt with understanding basic
measurement concepts. In addition to this research, there are a number
of studies that surveyed children's familiarity with standard measuring
units or terminology (Davis, 1959; MacLatchy, 1950, 1951; McKnight, 1965;
Mermelstein, 1964; Murphy, 1969, Spayde, 1953) or their skill in estimating
or measuring (Corle, 1960; Scott, 1966; Wilson & Cassell, 1953). Most of
these studies are too dated to be of much value or lack generalizability
because they were conducted with a narrow cross section of the population.

The best single source of children's and adult's familiarity with
measurement terminology and skill in measuring is the results of The
National Assessment of Educational Progress (National Assessment of
Educational Progress, in press). In their survey of mathematics skills,
National Assessment included a number of measurement exercises. These
items included problems in converting and comparing standard units of
measure, estimating and measuring length, and calculations of perimeter,
area, and volume. Since these exercises were administered to carefully
selected groups of nine-year-olds, thirteen-year-olds, seventeen-year-
olds, and young adults, they provide a representative picture of American's
familiarity with measurement skills and terminology. However, it is a
somewhat incomplete picture, as many basic measuring skills were not
tested.

The results of the National Assessment measurement exercises indi-
cate that all age groups except nine-year-olds can compare quantities
measured with di'7erent standard units of measure, and even nine-year-
olds are generally successful with comparisons involving feet and yards
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or pints and quarts. However, specific conversions are significantly
more difficult for all age levels. It is also worth noting that only
about half of the seventeen-year-olds or young adults demonstrate any
familiarity with standard metric units.

Most nine-and thirteen-year-olds are able to make simple linear
measurements. However, measurement operationi involving fractions of a
unit or requiring that the ruler be moved are significantly more diffi-
cult, as are problems involving indirect measurement. Nine-year-olds
are much more affected by these factors than thirteen-year-olds.

At all levels for virtually every exercise, perimeter, area, and
volume problems are exceptionally difficult. Fewer than half the nine-
year-olds can successfully compare the areas of rectangles that are sub-
divided into unit squares. Less than a quarter of the thirteen-year-olds
and half of the seventeen-year-olds can calculate the volume of a simple
rectangular parallelepiped subdivided into unit cubes. Problem situations
involving area calculation are even more difficult. The results for
the nine-year-olds generally are consistent with Piaget's conclusion
that the notion of a unit covering appears in Stage IIIB at about the age
of 9-10 years. But, the volume problem indicates that the operations
of Stage IV do not develop for h substantial majority of the population
by age 13 and are not even learned by most of the seventeen-year-olds.

State assessment reports provide another source of baseline data
on children's ability to apply measurement concepts. A number of states- -
including Florida, Michigan, Texas, and Wisconsin--now use criterion
referenced testing procedures. These results provide a valuable supple-
ment to the National Assessment results. On the whole their results
support the conclusions drawn from the National Assessment results.
Taken together the results from National Assessment and the state assess-
ments indicate that, even in the upper grades, a substantial number of
children have not learned a number of fundamental measurement concepts.

Instructional Studies

A number of studies have investigated the effectiveness of various
instructional- strategies in teaching measurement skills. In general,
these studies have lacked any u-ifying conceptual basis, and it is
difficult to assess their contribution. Several studies (Williams, 1970,
Young, 1969) have claimed success in teaching measurement concepts to
three-and four - year -olds, but they provide no evidence to indicate that
anything more than rote learning occurred. On the other hand Luchins
and Luchins (1947) and Wertheimer (1945) were specifically concerned with
meaningful learning and report examples of children as young as five or
six generalizing the rectangle formula to discover a method for calcu-
lating the 'rea of a parallelogram. Although they make no claims that
they are reporting typical responses for this age, these results are
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exceptional in that Piaget's developmental stages would not include these
skills until the stage of formal operations at 11 or 12.

A number of other studies have investigated the effectiveness of
different instructional strategies in teaching different measurement con-
cepts (Bergmann, 1973; Craig, 1973; Eroh, 1967; Johnson, 1970; McFee,
1968; Mueller, 1969; Pattison, 1973; Richards, 1971; Urbach, 1973). On
the whole, they provide no conclusive evidence for the superiority of any
specific instructional strategy in teaching measurement concepts.

Most mathematics programs have ignored Piaget's description of the
development of measurement concepts and other cognitive processes (see,
for example, Huntington, 1970) and have dealt with measurement at a
skill level. However, several programs have been influenced by learning
research and provide specific instruction in fundamental measurement
processes (e.g., AAA.; Science: A Process Approach, Developing Mathematics
Processes (DMP), and Science Curriculum Improvement Study (SCIS)). By
investigating the relative effectiveness of these existing programs, one
might get some insight into the long range effects of instruction that
cannot be gained from short training studies. Two such studies exist.
Kamps (1971) investigated effectiveness of three second-grade programs
(AAAS, a program built around Cuisenaire Rods, and a program which in-
cluded.little measurement) in teaching six conservation and measurement
concepts taken from The Child's Conception of Geometry (Piaget et al., 1960).
He found that AAAS students scored higher on conservation tasks, but there
was no difference in overall achievement between the three programs.

Almy and associates (Almy, Dimtrovsky, Hardeman, Gordis, Chittenden,
& Elliot, 1970), in a longitudinal study of logical thinking in the
second-grade, compared programs using AAAS together with the Greater
Cleveland Mathematics Project (GCMP) materials, SCIS together with GCMP
alone with no prescribed science program, and a program with no prescribed
lessons in either science or mathematics. She found some evidence that
the children using only the GCMP program scored lower on a conservation
of weight task. However, she found much greater differences for atransi-
tivity of length task. In this case, the AAAS group scored the highest
followed by the group with no prescribed lessons, with the GCMP and
GCMP/SCIS groups about the same. Almy also found that second-grade
children in schools in which systematic instruction in mathematics and
science was initiated in kindergarten scored higher on the conseryation
task than children who did not begin systematic mathematics and science
instruction until the first-grade.

In another study investigating the relative effectiveness of different
curriculum programs in teaching measurement concepts, Friebel (1967) found
that sixth- and seventh-graders using the SMSG program scored significantly
higher on a test of measurement understanding than corresponding groups
instructed with traditional programs. The results of all three of these
studies must be interpreted with some caution as it was not possible to
randomly assign subjects to treatments or to maintain strict experimental
controls in classroom settings involving large numbers of students.
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Discussion

If one accepts Piaget's criteria to establish the existence of a
given operation, the research supports the conclusion that premeasure-
ment concepts become operational before measurement concepts do. However,
the research alai) indicates that children can and do attend to selected
measurement concepts before premeasurement concepts are fully operational.
In fact, the studies reported by Bearison (1969) and Inhelder and Sinclair
(1969) indicate that certain measurement experiences can accelerate the
acquisition of premeasurement concepts.

Proposed Models of Cognitive Develgpment.

This review of measurement research points to the conclusion that
there has been an exaggerated emphasis on internalized logical-mathematical
structures. Among other things, this has resulted in much needless
controversy over exactly what evidence is required in order to. conclude
that a child has attained a given operational level. The research on
measurement suggests that it is not the existence of internal logical-
mathematical structures that limits performance. Children possess such
structures long before they can widely apply them. No individual task
or group of tasks can conclusively demonstrate the existence or absence
of a give operation. At best they indicate that a child can apply a
given operation to a given task. The research on transitivity and the
notion of horizontal cicalage. indicate that task specific variables have
a profound effect on performance and should be included in any equation
describing cognitive development.

Flavell and Wohlwill (1969) propose that an analysis of cognitive
development should incorporate a competence-performance distinction
similar to Chomsky's. model for language acquisition. The competence
component of the model is the logical-mathematical structure of the
domain, and the performance component represents the psychological pro-
cesses by which the structures in the competence component get accessed
to specific tasks. The competence component is an idealized abstract
representation of what is known or understood, whereas the performance
component must account for the reality of stimulus variations, conflicting
information, memory limitations, etc.

A similar approach is the information processing model proposed by
Baylor et al. (1973) and Klahr and Wallace (1970). This approach has
generally been limited to situations like seriation, in which there is
an abundance of observable action which can be taken to imply the
Application of certain strategies. It may be much more difficult to
build information processing models for conservation, in which there is
less overt action. There is alsothe difficulty that a child's logic
is not always congruent with adult logic, and it may be very difficult
to identify the specific heuristic strategies a child is really using
or what aspect of the stimulus situation he is attending to. Neverthe-
less, many of the logical difficulties that occur in the development
of measurement concepts seem to relate to information processing
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variables, especially if sufficient emphasis is given to the encoding
process. Such constraints as stimulus load, demands on memory and
different logical operations (subroutines), the requirement of simul-
taneously considering several variables, etc. are significant factors
in the development of the measurement processes. All appear susceptable
to information processing analysis. It is even possible that a more
productive description of the development of measurement concepts would
involve levels of information processing capabilities rather than stages
of logical operations. In fact, the stages of learning outlined by
Inhelder (1972) in describing the results of the measurement training
exercise seem to be moving in this direction.

Training

It is generally accepted that appropriate training can accelerate
the development of specific measurement concepts. Furthermore, training
in measurement seems to accelerate rather than depend upon the develop-
ment of concepts of conservation and transitivity. It might be hypothe-
sized that the effectiveness of training is more a function of the infor-
mation processing demands of the specific tasks than of the development
of prerequisite logical operations. In other words, children may bene-
fit from training as long as the information processing demands of
the tasks do not exceed their limits, in spite of the fact that they do
not possess the prerequisite logical operations. A child's logic is not
the same as adult logic. Given appropriate instruction, they may be able
to attend to certain relevant dimensions of a stimulus situation and
ignore the fact that their judgments depend on certain prerequisite know-
ledge that they lack.

Although the research suggests that training can accelerate develop-
ment, measurement learning studies have failed to identify the specific
mechanisms of development. There are no critical experiments that con-
firm or preclude the major theoretical positions, as the results of most
training studies can be explained in either behaviorist or equilibration
terms.

There are also some serious shortcomings observed in the, training
of basic measurement concepts. One limitation is the general failure
of subjects to transfer their learning to related tasks. Second, train-
ing procedures, even in the most successful studies, have failed to im-
prove the performance of a substantial number of the subjects receiving
the training. The recent training research of the Genevans suggests
that only subjects who have achieved conservation of number benefit
from training in logical operations.

In interpreting these results in terms of the Flavell and Wohlwill
competency-performance model, it might be hypothesized that training
generally affects the performance component of the model and does not
affect the basic comeptencies. In other words, training may not
generate new operational structures but rather trains subjects to
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generalize existing operations to new situations. From an information
processing perspective, one might speculate that training does not result
in a higher level of information processing but simply shifts the domain
in which the established level can be applied.

Educational Implications

While there is an abundance of clinical research on the development
of measurement concepts, and a number of recommendations as to how this
research might apply to the maLhematics curriculum (see for example
Beilin, 1971; Lovell, 1966, 1972; Steffe, 1971), there is little direct
research relating the results of clinical studies to measurement instruc-
tion in the mathematics curriculum. Although research has identified
levels of development of measurement concepts and rough age approximations
for the development of certain operations, it is not immediately clear
what implication this has for the curriculum. Beilin (1971) proposes
that the development of logical operations may depend on prior knowledge
that must be lerrned by rote. If this is the case, fitting instruction
to coincide with appropriate developmental stages might actually retard
development. Some support for this position is found in the study
reported by Inhelder and Sinclair, which indicated that measurement
experiences accelerate the development of conservation, even though con-
servation is a logical prerequisite for measurement.

The clinical training procedures that have induced various operations
have frequently required sustained effort to achieve very modest gains.
The direct translation of the methods of these studies to the mathema-
tics curriculum is at this point unwarranted. To paraphrase Beilin (1971),
the research on measurement has shown how complex a process the growth of
measurement concepts can"be, but it has not demonstrated how it can be
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Introduction

The teaching and learning of measure has been investigated by a number
of different individuals using a variety of experimental procedures. The
most productive studies have considered children's understanding of
fundamental measurement concepts and how children learn these concepts.
The development of measure concepts proposed by Piaget and his associates
(Piaget & Inhelder, 1941; Piaget, Inhelder, & Szeminska, 1960) has been the
focus of most of this research. Although there have been a variety of
experimental procedures employed within a Piagetian framework, Piaget's
theories provide some unity to this research and give the results some
sense of coherence. The research that has focused strictly on how to teach
measurement skills lacks any unifying conceptual basis and has contributed
little to the understanding of teaching or learning of measure.

Defining a unifying conceptual basis for the learning and teaching of
measure is ore of the major needs of researchers. Such a unifying concep
tual basis should encompass previously discovered factors affecting the
learning of measure. In addition, this basis should suggest new problems
for research s and accommodate to the instructional constraints of the
schools. Identifying, describing, and testing the potential of such r.
model is perhaps the foremost need of researchers in the field of how
.children cope with measure.

Although the unifying influence of Piaget's work has resulted in
research that provides a fairly consistent picture of how children at
different stages of development operate within a variety of fundamental
measurement situations, the conceptual framework that it has provided
has proved to be inadequate on two counts. First, Piagetian measurement
research has focused on a relatively narrow cross section of measurement
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concepts and processes. Most of this research has dealt with primary
notions like conservation and transitivity, and many of the more complex
measurement operations have been virtually ignored. What is needed is
a more comprehensive unifying basis that will focus on a broader scope
of measurement research problems.

A second limitation of much Piagetian research has been its attempt
to describe behavior strictly in terms of the relationship between logical-
mathematical structures. This analysis has proved deficient in that it
does not easily account for many observed variations in performance and is
not very useful in describing the effects of different training procedures.
What is needed is research that will begin to generate a more comprehensive
model of cognitive development that can more adequately predict and account
for the relationship between different cognitive skills.

Thus, research needs to take a more inclusive perspective both of the
types of activities that are included as measurement and the range of
factors that influence behavior with respect to measurement operations.
In other words, we need a unifying basis that broadens the scope of measure-
ment research and a more complete model for analyzing and describing the
types of behavior that occur within individual studies.

The Homomorphic-Transfer Model

One candidate for a unifying conceptual basis is the homomorphic-trans-
fer model described by Osborne in this volume. This model is based on
the fundamental functional character of measure systems, that is, that a
measure system associates an entity with a number. The entity is an
element of a structured space, the domain of the function. For a single
measure system the learner must acquire understanding and skills stemming
from the (a) characteristics of the domain space, (b) characteristics of
the range space, and (c) the linking homomorphic association of the two
spaces. These three sets of learnings constitute a research problem in
the transfer of learning. We label this as the within transfer problem
since it is concerned with a single system of measure, such as area. Thus,
the research needs to address questions concerning each type of acquisition.

Research into the matter of how children use cues from either the
domain space or the range space to provide insight into the other space
should be of practical significance in engineering instructional sequences
for the classroom. Clearly, little is known concerning how children tie
together concepts and skills of these two spaces to create the homomorphism
that is a measure system. A more careful examination of the cueing
mechanisms in terms of transfer may be revealing. It seems reasonable to
study cueing mechanisms for several different measure systems. Studies of
the cueing variable need to be conducted that recognize that measure
systems differ in terms of the perceptual referents to which the child has
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access. Perceptually, comparison of volumes is quite different than
comparison of speeds. Does this perceptual difference affect the use
of cues by the child? Do numerical cues assume greater significance
in the learning process as the perceptual base in the domain space
becomes more complex and/or indirect?

Another factor that needs attention is the cueing variable,
shifting from a unit iteration basis for incorporating number into the
measure system to a multiplication based incorporation of number. For

example, for area and volume concepts, teachers begin to develop the
concept of a unit using situations in which children "fill" the domain
space. Then they switch to using A = lw or V = 1wh, respectively,
often without sufficient attention to tying together the space-filling,
unit iteration and the multiplicative ideas. Surprisingly little
research. has explored the effects of this switch and how it can be
expeditiously accomplished. Toes the experience with the multiplication
torpedo the child's understanding of unit and iteration or, to sayit
another way, does it provide an interference with the unit ideas and the
premeasure domain space ideas? It may well be that memory is the operant
factor for children whose concept of the space-filling character of
units is incomplete. Young children tend to concentrate on positional
and discrete characteristics of units in many early measure situations.
Do these children need special experiences to help them establish the
multiplicative version of measure?

Perception is necessarily a factor in measure. The child encounters
approximation and error in coping with measurement. For example, this
happens when a child uses a ruler and the end of the object being
measured does not neatly align with a mark on the ruler or when a polygon
cannot be exactly covered with units of area. For the young child,

instructional materials are designed to be "nice" or to "fit." Then

at some later point, conflict is introduced. Finally, relative error,
accuracy, and other related concepts are introduced. But we have no
research-based evidence concerning how and when these concepts may
be appropriately introduced nor the effect of these inescapable perceptual
conflicts on the child's learning about area. Most of the measure
related instructional materials appear to build in a perceptual regularity
and nicety (problems come out right) that is missing from real world

measurement. Several creative articles that address these types of
instructional problems (Payne & Seber, 1959; Trimble, 1974) have
advocated seemingly sensible approaches, but none are based on research
evidence. We simply do not know how these factors of perceptual reality
affect children's understanding and learning of measure systems.
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Structural Transfer and Measure Learning

A measure system is a complex structure of ideas. Pairs of measure
systems share many of these ideas. Previous research has explored how
children form concepts and skills within a single system of measure
rather than purposefully looking for instructional advantage in building
concepts for one measure system in terms of pervious learning in another
measure system. Within the unifying conceptual basis advocated in this
paper, the homomorphictransfer model of measure learning, this sort of
learning is described as the across transfer learning problem as defined
in the paper by Osborne in this volume.

The across transfer question characteristic of the homomorphic
'4ransfer model will necessarily address some outstanding needs of teachers
and curriculum designers as they work with measure and measurement.
Across transfer questions may also focus attention on older as well as
younger learners. Necessarily, the across transfer setting demands
that subjects have some previous learning in a measure system to set
up the potential for transfer. This need for prior learning and
experience with measure will tend to shift the average age of subjects
upward. This is not inappropriate; the majority of school instruction
directed to measure is with older children at the upper elementary or
junior high school levels. Interestingly, little research concerning
measure learning has been conducted at the age levels where most instruction
takes place.

It should be noted that we do not have considerable research evidence
concerning the sequences of children's naturally acquired concepts in
several different measure systems. For example, researchers in the
Piagetian tradition have looked for horizontal decalages for important
ideas like transitivity and conservation that generalize from one measure
system to another. But the decalage research has not been oriented to
instruction. It has not considered, generally, questions of how the
learning of one measure system can be used tb advantage in learning another-
measure system nor has it sought to identify the factors affecting this
transfer. Rather, it has sought to determine if and when such learning
of generalizations took place in a natural fashion without instructional
intervention.

Mathematically, the similarities of measure systems are the most
apparent characteristics of measure. But how have these similarities
been taken advantage of in designing research on the learning of measure?
The similarities are in terms of the structures of the measure systems.
The similarities suggest the psychology of transfer.

We do not have refined notions about the nature of operant factors
that may facilitate the transfer of structures. Dienes and Jeeves (1970)
work examining finite groups and transfer is one of the first studies of
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structure and transfer. Although researchers (Branca & Kilpatrick, 1972;
Brazier, 1974) have used the Dienes and Jeeves' approach to relationships
between group structures, the evidence for what facilitates transfer
between structures, if it happens, is quite inconclusive. Since the
research is founded on the structures of finite groups, it reveals little
information that is relevant to the structural transfer problem for measure
systems. Brazier's study does, however, examine the role of student
preference for a geometric or an algebraic mode of thinking in relation
to the group problems; this factor may be of some significance in
examining the learner's incorporation of number into measure systems.

The large majority of transfer studies have not been concerned with
structures and structural properties. For example, psychologists have
tended to focus on the learning of artificially simple concepts rather
than examining the acquisition of complex relations and structures that
are more typical of real measure systems. Thus, the researcher intending
to use prior research as a base for design of new research problems is
faced with using research concerned with the learning of finite groups
or with the application of principles for the learning of relatively
noncomplex concepts and ideas. Neither quite fits the learning of
measure.

Given the large number of measure systems the child encounte'rs and
must use in matriculating through school, it appears that careful
examination of the transfer process is potentially in the best interests
of redesign of curriculum. This examination should be in tams of
helping the student acquire new but similar structures erficiently.

The concept of structure has been identified as one of the primary
characteristics of the postSputnik curricula in mathematics. The struc
tural emphasis in the mathematical experiences of the child was intended
to increase understanding and facilitate learning as well as bring
mathematics to a current level of discourse and thinking styles. Interest
ingly, however, we have not evaluated the factors that might make struc
ture a facilitator of learning. Perhaps the careful study of transfer
of structures in a measure context will reysal a facilitating nature of
.structure in mathematical learning. Toward this end, the structures of
various systems and their'common elements have been identified (Blakers,
1967; Osborne, 1974). The next research task is to use what is known
about transfer to investigate the effects of various instructional variables
in terms of their ability to facilitate transfer between various measure
systems. It is important to mention, however, that the complexity of
measure systems ideas suggests that short term research efforts will
not be as productive as longer term studies. Embedding the studies
within a carefully conceived curriculum, such as Developing Mathematical
Processes program, appears to improve the possibility of payoff in long
term experiments.
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A final category of needed research in the across transfer setting
relates to the :earning of more complex measure systems. Systems that
are based upon composite functions, such as speed, have not generally
been well researched. Examining transfer from less complex measure systems
to such composite function systems or between composite function systems
appears to offer some productive questions to pursue in a totally uncharted
territory. The homomorphic-transfer approach also makes accessible
different questions concerning how children cope with perceptually con-
fusing systems of measure. For example, energy, mass, and temperature do
not have visually perceptable characteristics, like length, area, volume,
and angularity. But we have little insight into the perceptual factors
involved. However, the across transfer approach provides a method of
comparing the cognitive problems that learners may encounter.

The advantage of the homomorphic-transfer model is that it broadens
the focus of measurement research. It provides a comprehensive logical
analysis of the measurement process that incorporates a complete range of
measurement operations. It identifies a number of significant variables
that characterize different measurement operations. It provides a unify-
ing theme for interpreting the results of various research studies, and it
identifies a variety of basic measurement operations that have been ignored
in measurement research. Furthermore, the homomorphic-transfer model
encourages researchers to consider the complete measurement process- -
including the domain, range, and measure function.

One limitation of the homomorphic-transfer analysis of measurement is
that it is based primarily on a logical analysis of the measurement process.
Yet, Carpenter's review of measurement (in this volume) indicates that
a strictly logical analysis of the measurement process does not account
for many observed variations in performance and is not very useful in
describing the effects of different training procedures. Therefore, in
conjunction with the homomorphic-transfer analysis of measurement it is
necessary to generate a more complete model of cognitive development.

Models of Cognitive Development

Flavell and Wohlwill (1969) propose that an analysis of cognitive
development should incorporate a competence-performance distinction
similar to Chomsky's model for language acquisition. The competence
component of the model is the logical;mathematical structure of the
domain, and the performance component represents the psychological
processes by which the structures in the competence component get accessed
and applied to specific tasks. The competence component is an idealized
abstract representation of what is known or understood, whereas the per-
formance component must account for the reality of stimulus variations,
conflicting information, memory limitations, etc.
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In Flavell and Wohlwill's model a performance for a given
operation should be specified in terms of three parameters: Pa, the prob-
ability that the operation will be functional in a given child; Pb, the
probability of the operation being applied to a given task; and k, the weight
to be attached to Pb in a given child at a given age. The equation for the
probability of a given child solving some particular task is:

P (+) = Pa x Pb
1-k

What is needed is research to identify the factors that influence Pb.
It remains to be seen whether Pb can be quantified as a function of these
factors. But whether they can be quantified or not, such factors as the
constraints of the stimulus situation, the demands on memory, and the types
of logical inferences required all affect performance; the effect of these
factr ',.. should be included in any analysis of cognitive behavior.

One approach to an analysis of cognitive behavior involves the appli-
cation of information processing techniques to describe and explain Piagetian
operations (Baylor, Gascon, Lemoyne, & Pothier, 1973; Klahr & Wallace, 1970).
Instead of analyzing behavior in terms of the logical and algebraic proper-
ties of the problem, the approach is to analyze the information processing
requirements of the task. In other words, behavior is described in terms
of the subroutines a child would need to apply in order to perform a given
task. This procedure is somewhat analogous to analyzing the compilation
and execution functions of a computer. This involves (a) encoding external
stimuli, (b) assembly of task specific routines from a repertoire of funda-
mental processes, and (c) execution of the task specific routines. This
not only forces the programmer to develop an explicit description of the
behaviors involved in each task, but some sort of analysis on the demand of
subroutines may provide an indication of the level of difficulty of each
task.

This approach has generally been limited to situations like seriation,
in which there is an abundance of observable action which can be taken to
imply the application of certain strategies. It may be much more difficult
to build information processing models for conservation, in which there
is less overt action. Furthermore, there is also the difficulty that a
child's log!_ is not always congruent with adult logic, and it may be very
difficult to identify what aspect of the stimulus situation he is attend-
ing to and what specific heuristic strategies a child is really using.
Nevertheless, many of the logical difficulties that occur in the development
of measurement concepts seem to relate to information processing variables,
especially if sufficient emphasis is given to the encoding process.

Although Baylor et al. (1973) do attempt to use the information pro-
cessing analysis to construct a computer program to simulate children's
behavior, the construction of artificial intelligence programs is not
crucial for research in cognitive development. What is distinctive about
their work is the analysis of behavior in terms of information processing
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requirements rather than strictly in terms of thq logical and mathematical
properties of the problem. The results of current research indicate that
there are at least four major dimensions that should be included in such
an analysis: (a) the constraints of the stimulus situation, (b) the demands
on memory, (c) the types of logical inferences required, and (d) the types
of responses required. These dimensions are comparable to the major com-
ponents involved in the execution of a computer program. The stimulus
dimension is analogous to the input component, the demands on memory can
be analyzed in terms of use of short and long term memory, the type of
logical inference required may be compared to the assembly and execution
of the program, and the responses are comparable to the output of the com-
puter.

There is a substantial body of research indicating that stimulus
variables significantly affect performance on tasks testing basic measure-
ment concepts (see the Carpenter paper in this collection). An especially
significant stimulus variable seems to be the sequence of the cues and
the presence or absence of conflict or perceptual support (Carpenter, 1975;
Divers 1972; Jones, 1969; Trenary, 1972). The purpose of research in this
area would be to identify what factors of a stimulus situation a child
can attend to and to identify the effect of different stimulus variables at
different stages of development. For example, in a study of conservation
and measurement concepts (Carpenter, 1975) it was found that children can
attend to numerical stimuli at least as readily as to perceptual stimuli.
There was also some evidence that children in a transitional stage need
the support of identifiable compensation in order to maintain conservation
judgments.

A second factor that should be included in an analysis of cognitive
behavior is the demand on memory. For instance, a study by Baylor et al.
(1973) indicates that by equating tasks in terms of memory demands, the
decalage between length and weight seriation disappears, and Roodin and
Gruen (1970) found that the provision of memory aids significantly improves
performance on a transitivity task.

The third and perhaps the most important dimension to be included in
such an analysis is the type of logics:. inference required. Notions like
centering, recognizing and resolving conflict, and simultaneously consid-
ering several variables are a few examples of types of logical inference
that may be productive in describing cognitive behavior.

The stages of learning outlined by Inhelder (1972) to describe the
results of a measurement training exercise are defined in terms of an
information processing dimension similar to that described above. Sub-
jects who showed no progress centered on a single dimension. If they
were asked a length question or provided with length cues, they would
center on length. If asked a number question, they would center on num-
ber and ignore length. There was successive application of two distinct
systems, and these subjects saw no contradictions in their responses. In
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the second stage, both evaluation schemas seemed to be present simulta
neously. Subjects were not satisfied with either a purely numerical or
linear solution and turned from one solution to the next. However, they
were not capable of a new solution that accounted for b?th dimensions
simultaneously. Thus, although subjects ware aware of the' contradiction,
they could not begin to resolve it. In the third stage, some attempt was
made at integration, but the result was an inadequate "compromise solution."
In the fourth stage, the different schemes were integrated and coherence
was attained.

The fourth dimension is comparable to the output component of a
computer. An analysis of cognitive behavior should include some consider
ation of the types of responses subjects are asked to make. Some children
understand certain principles but are unable to verbalize them. Signifi
cantly earlier development of fundamental operations has been found with
nonverbal assessment techniques compared to verbal techniques. Requiring
that subjects provide valid justification for their responses significantly
lowers the number of correct responses (Braine, 1959; Gruen, 1966; Sawada &
Nelson, 1967).

Once some form of information processing model has been constructed,
it should not only provide some insight into the relative difficulty of
different tasks, but it should also provide a basis for analyzing the
effect of training.

Training

Measurement learning studies have failed to identify the specific
mechanisms of development. There are no critical experiments that con
firm or preclude the major theoretical positions because the results
most training studies can be explained in either behaviorist or equili
bration terms. One reason or this lack of success is that both theories
are so general that they account for a wide range of behaviors. Therefore,
while it does not appear likely that research will easily confirm or dis
prove major theories, no major theory appears to be readily verifiable.
As a consequence, no current theoretical perspective provides a definitive
structure for evaluating the potential effect of different systems pf
instruction.

Although contrary evidence exists, virtually every training procedure
has In some sense been able to accelerate the acquisition of logical
operations However, new research that does no more than demonstrate that
training is possible will contribute little to our understanding of the
development of measurement. At this point, the most promising objective
for future research is to attempt to identify the specific effects of
training. To date most training research has only demonstrated that
certain procedures do or do not improve the overall performance of a group
of children on a given set of tasks. Future research should include a
more complete analysis of (a) the entering cognitive skills of each
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subject, (b) specific learning effects for subjects at different cognitive
levels, and (c) the specific variables of the training situation that
account for learning.

One study that dealt with all three of these factors is the length
conservation training study reported by Inhelder (1972). All subjects
were pretested for number and length conservation, and only those who
passed the number conservation problem and failed the length conserva-
tion problem were included in the experiment. Due to the one-to-one
clinical training procedures, the Genevans were able to specify cognitive
levels of subjects in terms of their performance during the training as
well as on the basis of the pretest on number and length. Therefore, they
were able to describe the cognitive processes of the students for whom
the training was successful and those for whom it was not and could give
some explanation why some subjects learned to conserve as a result of the
training and others did not.

A major goal of training research is to identify measures of cogni-
tive development that can specify which training procedures are appro-
priate for children at given levels of cognitive development. The Genevans
have concluded that learning is very unlikely for children who fail to
conserve numerousness. Although this hypothesis needs further validation,
some measure of subjects' ability to conserve number would seem to be a
fundamental basis of classifying subjects.

Information processing capabilities would seem to be one of the best
measures of cognitive development for determining the effect of training.
Teach-test procedures like those employed by Montgomery (1973) represent
one potential measure of information processing skills that are specifi-
cally related to the ability of subjects to profit from different types of
instruction.

Measurement training studies should'include comprehensive measures
of the specific effects of training for subjects at different cognitive
levels. Results should include measures of transfer and retention.
Transfer tests should be carefully structured to include skills that
develop at or before the stage the trained skill naturally develops. In
other words, the results of training studies should provide some indica-
tion of whether training has resulted in a narrowly learned skill or
whether subjects have actually achiaved a more advanced stage of develop-
ment. Furthermore, these results should be analyzed for subjects at
each stage of development. Results should describe the cognitive levels
of subjects who are successful and those who are unsuccessful in achiev-
ing different objectives of the training exercise.

Finally, research should attempt to identify specific variables of
training that account for learning of subjects at different cognitive
levels. The information processing requirements of different instruc-
tion is one possible basis of analysis. It might be hypothesized that
children's ability to learn from a given training procedure depends on
whether the information processing demands of the training procedure are
appropriate for their level of development rather than whether they
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have learned the logical prerequisite concepts. Some support for this
position is provided by Inhelder's study (1972). She found that subjects
who were not successful in learning to conserve length were those who
could not deal with the information processing demands of the training
procedures, whereas presumably none of the subjects had acquired the pre
requisite measurement operations.

Conflict is another potentially significant variable. Although it
appears that active participation in a conflict creating situation is not
necessary for learning to occur (Beilin, 1971), for the Genevans, conflict
is a major factor in the development of fundamental operations. The effect
of this variable should be investigated by systematically varying levels of
conflict in training. For example, the instructional sequence outlined by
Inhelder (1972) to teach conservation of length begins with the most com
plex task. The first task generally induced an incorrect response based
strictly on length. The second task generally induced an incorrect response
based strictly on number. The basis for the two responses were in direct
conflict. It was not until the third problem that sufficient infor
mation was provided to resolve this conflict. Thus, this sequence seems
designed to maximize conflict. Subjects were induced to begin with
incorrect conflicting responses and subsequently attempted to resolve this
conflict. If the sequence of the problems was reversed, the level of
conflict would presumably be reduced. A comparison of these two instruc
tional sequences might provide some insight into the effect of different
levels of conflict on learning.

Reversibility is another variable worth investigating. Brainerd
and Allen (1971) have proposed that the distinguishing characteristic
of successful training studies is that reversibility is inherent in their
training procedures and is absent in unsuccessful training studies. They
maintain that even those studies that do not specifically train for
reversibility actually demonstrate either overtly or covertly the inverse
of specified uperations. They cite as an example a study by Gelman (1969),
in which they are able to identify inverses of operations used in training
in different steps of the training procedures. Since reversibility was
not intended to be the significant variable in this study, it would be a
simple matter to redesign a parallel study that contained no reversibility.
A comparison of the relative effect of these revised instructional proce
dures as compared with the original procedures would provide some test
of Brainerd and Allen's hypothesis.

Many training studies have employed a single training procedure.
Although they have been able to demonstrate that training is possible,
most of these studies provide little insight into the relative effective
ness of specific training variables. Studies that have compared different
types of training have often chosen such dissimilar procedures that compari
son is very difficult. There is a need for more studies like those
described above that provide systematic variation along a single dimension.
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Measurement in the Mathematics Curriculum

The greatest deficiency in current research is the lack of studies
relating the results of clinical studies to the instruction of measurement
in the mathematics curriculum. Clinical studies have yet to provide a
definitive picture of the development of measurement concepts or the
effect of training in clincial settings, but it is doubtful that they
ever will. However, there is sufficient clincial research to begin to
study the implications of this research for th' mathematics curriculum.

A fundamental question is the placement and sequence or topics.
Research has identified a number of basic operations like conservation
and transitivity that appear to be fundamental for the development of
measurement concepts. But, it is not clear whether or not fitting instruc-
tion to coincide with the appropriate cognitive operations is the optimal
method of instruction. The results of clinical studies indicate that
instruction in measurement may be facilitated (rather than strictly depend
on) the development of these operations. However, it is not clear how
these results obtained in short, one-to-one clinical training sessions
apply to the mathematica curriculum. At this point, the net result of
extended instruction for preoperational children in fundamental measurement
operations is not known. Research in school settings over extended periods
of time is needed to identify the appropriate placement and sequence of
topics for children at different stages of development.

A second basic question has to do with determining the effects of
long term instruction on fundamental measurement operations. Training
studies have generally been conducted over short periods of time. Conse-
quently, the gains they have induced have generally been modest. A study
by Gal'perin and Georgiev (1969) indicates that instruction over longer
periods of time may yield substantial gains in the development of baiiic
cognitive operations. Due to the extraordinary gains that this study
claims to have achieved, careful replication is warranted.

A second approach is to evaluate the relative effectiveness of
existing curricula like Developing Mathematical Processes or AAAS Science:
a Process Approach that provide specific instruction in fundamental
measurement processes. This evaluation should specifically focus on the
development of fundamental operations like conservation and transitivity,
and should test the generalizability of measurement learning.

Measurement studies conducted within regular school settings over
extended periods rif time require a substantial investment of resources,
and it is difficult to maintain strict experimental controls. However,.
these studies are needed to obtain valid insight about what implications
clinical research on measurement learning has for the mathematics curri-
culum.

Furthermore, research on basic measurement concepts should be a
fundamental component of curriculum development. Isolated training
studies that attempt to identify general principles of learning are
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always subject to the criticism that their results are only valid for
the specific procedures employed. For example, there is no single set
of training procedures that represents reversibility. Such studies
conducted within the framework of curriculum development at least provide
some indication of which of several alternatives should be pursued in the
specific program.

Summary

Researchers in the area of teaching and learning of measure have a
profound need for a model or a unifying conceptual basis that will
accommodate to questions and problems concerning a variety of measure
systems. The lack of such a model provides a fundamental characteristic
of incoherence to much of the research related to the school-based learning
of measure concepts and skills. Piagetian research has provided the
beginnings of such a unifying conceptual system and many Genevan studies
significantly contribute to our understanding of the learning processes
of children. Unfortunately, however, the Piagetian analysis of measure
ignores some of the salient features of the mathematical structures we
call measure systems and, hence, has a limited potential for allowing
researchers to find a comprehensive set of predictive factors affecting
the learning of measure systems in general. The homomorphic nature of
measure systems coupled with the psychological processes of transfer
appears to possess a significant potential for revealing additional impor-
tant factors in studying children's acquisition and understanding of
measure systems. Further, it appears to provide a mechanism for studying
cognitive processes encompassing what we already know about transfer and
learning. Finally, it appears to be directly related to instructional
questions and problems of significance to teachers.

It should be clearly understood that this does not imply that there
is an overabundance of basic research concerning measurement concepts or
that we are advocating abandoning directions of research that already have
been established. 'Rather, we need to build upon this research and construct
a more complete model of cognitive development. It is proposed that an
analysis of behavior that takes into account the information processing
demands of individual problems as well as their mathematical structure
will be more productive than analy: s that relies solely on logical-
mathematical properties. At present, the most viable goal of such analysis
is to generate a predictive model that can identify the sequence of
acquisition of different tasks and can be used to evaluate the effect
of instruction for children at different levels of development.
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On the Mathematical, Cognitive and Instructional

Foundations of Rational Numbers

Thomas E. Kieren

University of Alberta

Perspectives on Rational Numbers

The sophisticated consideration of whole-part relationships is one
of the significant intellectual achievements of mankind. Yet, fractions
(and the rational numbers they represent) have been with us almost
throughout recorded history. For example, in ancient Babylon (circa
2000 B.C.), written records indicated the existence of a sexagesimal
precursor to our decimal-fraction. Nonetheless, it is evident that the
Babylonian system was not a true place value system because what we know
as rational numbers were expressed in a mixture of decimal and sexagesimal
notation. What is today considered the whole number part of a decimal
fraction was expressed in base 10, while the "fractional" part (Cl) was
shown in sexagesimal form (Wilder, 1968). This strange phenomenon arose
from the adaptive absorption of one ancient Middle Eastern culture by
another, and it has persisted even until today. For example, when decimals
are used in angle measure--236 degrees, 27 minutes, 12.5 seconds--the result
is obviously a decimal-sexagesimal expression of the fraction. ,Thus, we
see that rational numbers and even features of their "arithmetic" have
been used by civilizations for the past four thousand years. Consequently,
it seems odd that instruction of children in this arithmetic should
continue to be the object of current scholarly study.

The seeming contradiction of ancient "success" with rational
numbers and modern consternation over instruction in rational numbers
is perhaps most vividly evident in the Egyptian case. As seen in the
ancient Ahmes papyrus, rational numbers were expressed in terms of unit
fractions (Mainville, 1969). For example, 16/63 would be expressed as
1/7 ( +] 1/9. Thus, 1/4 and 1/11 were expressed as and FR
respectively. But, except for 2/3 (lib ), rationals whose numerators
were other than one were w-itten as "sums" of unit fractions. Looking
at this, a modern person is moved to say, "How strange that people
would go to this level of complexity to express rational numbers!" One
marvels even more at the tremendously complex applications of rational
numbers as measures seen in the pyramids (Tompkins, 1971).
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How is it that the ancients showed such intellectual facility and
such engineering skill using such a "primitive" numeration scheme? How
is it that our children labor over learning fractions to such an extent?
It is clear that control over these mathematical ideas and the ability
to use them to control and order reality is a result of a thorough
understanding of the many interpretations of rational numbers. The
facilities inherent in modern numeration are of no help if the student
lacks the basic understanding of rational number ideas. Even with
electronic calculators and computers, it is the mathematical understand-
ing which gives students control and allows for applications.

In what follows, it will be argued that to understand the ideas of
rational numbers, one must have adequate experience with their many
interpretations. Most school curriculum materials simply treat
rational numbers as objects of computation. Hence, children and adoles-
cents miss many of the'important interpretations of rational numbers.
In particular, the "algebraic" aspects of the operations on rationals
are lost. Yet, rational numbers present a face to face confrontation
with algebraic problems because the child must:

(a) grapple with the notion of equivalence;

(b) cope with an operation "+" which in its algebraic form "works"
the way it does mainly for axiomatic reasons and is no longer
natural;

(c) work in a system where "+" and "x" are two distinct operations,
abstractly defined (these two operations with rationals are
analogous to "adding" lengths and composing functions); and

(d) work with the properties, particularly a general notion of
inverse.

Consequently, rational number concepts are different from concepts
associated with the study of natural numbers. Natural number concepts
(and, to a certain extent, the operation of addition) arise out of the
natural activity of children. And, multiplication is treated as a
special form of counting or as repeated addition; so its "algebraic"
nature is not apparent (although it has been observed historically that
children have difficulty multiplying by 0 and 1--algebraic notions).

To adequately learn the algebraic aspects that are inherent in
rational number concepts, the author will argue that a variety of
experiences with diverse interpretations of rational numbers are necessary.
But what are these diverse interpretations? While the following list
is not exhaustive, it contains those interpretations which serve as a
basis for the analysis of rational numbers given in this paper.

1. Rational numbers are
subtracted, etc.

2. Rational numbers are
extension (via our numeration

fractions which can be compared, added,

decimal fractions which form a natural
system) to the whole numbers.
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3. Rational numbers are equivalence classes of fractions. Thus,
{1/2, 2/4, 3/6, . . .} and {2/3, 4/6, 6/9, . . .} are rational numbers.

4. Rational numbers are numbers of the form p/q, where p, q are
integers and q # o. In this form, rational numbers are "ratio" numbers.

5. Rational numbers are multiplicative operators (e.g., stretchers,
shrinkers, etc.).

6. Rational numbers are elements of an infinite ordered quotient
field. They are numbers of the form x = p/q where x satisfies the
equation qx = p.

7. Rational numbers are measures or points on a number line.

Clearly these interpretations are not independent. Indeed, with appro-
priately defined operations and relations, they should be isomorphic.
But each interpretation allows for the L.onsideration of rationals from
a different perspective. The major portion of this paper is devoted
to the analysis of these interpretations.

If the goal is, to understand how children and adolescents think
about rationals or to understand nece,sary instructional moves for
teaching rational numbers, what is the value of conducting a logical
analysis of mathematical interpretations of rational numbers? It has
been suggested earlier that, in working with rational numbers, children
are dealing with mathematical str.z:ltures which do not have an obvious
basis in natural thought. Henna, n study of the natural thought of a
child would not be adequate fur. c,,asideration of the, development of
rational number ideas.

Sorting out some of the most important logical interpretations of
rational numbers should contribute to future research in a variety of
ways. First, only a limited amount of research has been conducted
concerning any of the various interpretations of rational numbers (e.g.,
Piaget, Inhelder, & Szeminska, 1960; Steffe & Parr, 1968), and some
interpretations have been almost totally neglected. Second, by failing
to take into consideration the urique salient features of each inter-
pretation, teachers and researchers have encountered difficulties that
could have been logically anticipated (e.g., instruction based on the
"multiplicative operator" interpretation of rational numbers does not
furnish a good basis for understanding addition of fractions). Third,
by investigating similarities and differences between various rational
number interpretations, it should be easier to form generalizations
from the results of studies that focus on individual interpretations.
Fourth, the logical analysis should suggest several alternative
sequences of experiences which might contribute to the acquisition of
various rational number interpretations. It is hoped that future
curriculum development will take into account the various interpretations
and the related instructional sequences that are suggested, and that
under these conditions a more productive study of rational numbers will
be a reality for children.
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The strategy of this paper is summarized below.

Select interpretations of rational numbers

For each interpretation
determine the mathematical

structure3 emphasized in
an interpretation

Derive a sequence of
necessary experiences:
instructional structures

Derive related
cognitive
structures

Rational Numbers as Fractions

Fish (1874) in the preface to his book, The Complete Arithmetic,
advises teachers that calculation as a faculty to be developed must
precede reasoning. Although, later, logic and reasoning were to be
encouraged, perfect accuracy in computation was to be maintained.

In many respects, Fish's admonitions relate well to his approach
to rational numbers. Little or no attention was paid to systematic
aspects. Fractions were objects of calculation. Attention to symbolic
manipulation was the concern of instruction, as was the memorization
of numerous terms. Even the applications presented by Fish (1874) seemed
contrived.

In 108/9 acre, how many acres? (p. 106)

A man paid $25 7/8 for a watch and sold it for $6 1/4 more
than he gave for it. What did he sell it for? (p. 110)

A farm is divided into 4 fields; the first contains 29 7/12
acres, the second, 50 16/21 acres, the third, 41 6/7 acres,
and the fourth, 69 3/4 acres. How many acres in the farm?
(p. 111)

It is clear that these were not problem solving exercises, but simply
computational exercises. How were these exercises to be done?
Solutions were to be deduced from memorizedprinciples and rules:
"Fractions can be added only when they have a common denominator"
(Fish, 1974, p. 110)

1 1 1
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The topics and concerns of modern text treatments of fractions
are frequently similar to those of their predecessors of 100 or more
years. ',,ne are many of the "absurd" problems. Gone is the emphasis
on devOuping the "faculty" of calculation. In their place is some
emphasis on intuition derived mainly from an increased use of visuals.

This intuition, along with an appeal to principles of "modern
mathematics" (e.g., equivalent sets of fractions, etc.), form the
basis of concept development. Yet,in Ebos, Robinson, and Pogue (1975)
we find statements such as, "To add fractions with unlike denominators
. . .we have another step to do. We must find equivalent fractions
which have the same denominator"(p. 38). This quote is suggestive of
the basic similarity which this text has with its predecessor of 100
years. One notes that regardless of the different approaches, the
main objectives of the two texts are computational and definitional.
In both cases addition, subtraction, etc., are seen as procedures
and not as operations in .an algebraic sense. There is little interest
in the mathematical nature of rational numbers or in the system of
rational numbers. The experiences suggested are aimed at procedural
skill and not thought of as a basis for later work in algebra or
analysis.

When the computation with fractions is the focus of instruction,
the learner is faced with a sequence of skills to learn. In this
sequence there are frequent ordered subsequences leading hierarchically
to a particular skill. For example, in Fish (1874) we find this
sequence of topics leading to addition of fractions:

(a) reducing fractions to higher and lower terms (in modern
parlance--equivalent fractions);

(b) reducing integers or mixed numbers to improper fractions;

(c) reducing fractions to equivalent fractions having a common
denominator;

(d) finding least common denominators of fractions; and

(e) adding fractions.

This sequence was further interspersed with principles and operating
rules for handling all cases of particular processes. So, with new
terminology accompanied with more intuitive instructional procedures,
this list closely parallels hierarchies of behavioral objectives in
many modern "learning packages" or "uni-paks." Thus, the mathematical
structure most evident when rationals are interpreted as fractions
is a dequence of procedures.or algorithms.

With this perspective on rational numbers, the necessary cogni-
tive structures and the closely related instructional procedures
focus on carefully developed skills with algorithms. As with other
"skills," when a learner fails to exhibit appropriate behavior, the
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common response is diagnosis via task analysis. Although this
process is instructionally fashionable today, it reached its height
in the 1930's and 40's in the work of persons such as Brueckner and
Grossnickle (1947). While not resorting to elaborate sets of
associations S la Thorndike, Brueckner and Grossnickle, nonetheless,
laid out a very detailed analysis of skills with fractions. There were
four major types of addition problems:

(a) like denominators;

(b) unlike but related denominators (1/2 + 3/4);

(c) unlike and unrelated denominators with no common factor
(1/7 + 1/11); and

(d) unlike and unrelated denominators with common factors.

For each type there were five kinds of fractions involved:

(a) proper reducible;

(b) proper nonreducible;

(c) improper fractions as mixed numbers with reducible
fractions (1 9/6 = 2 1/2);

(d) mixed numbers with nonreducible fractions (8 5/4 = 9 1/4); and

(e) mixed numbers with fractions changeable to a whole number
(p. 311).

Each of these settings was further analyzed into eight cases according
to the sum obtained. For example:

(a) two fractions having a sum less than 1;

(b) two fractions Flaying a sum greater than 1;

(c) mixed numbers with a fractional sum less than 1; and

(d) fractions whose sum is 1.

Thus, there were 4 x 5 x 8 = 160 different addition types. The authors,
Brueckner and Grossnickle, of course did not envision these skills as
independent.

When the pupil has learned to find each kind of sum (a-e)
in adding like fractions (type 1), he has learned the general
procedure to use for each of the other 3 types, after unlike
fractions have been changed to a common denominator (p. 311).
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As noted previously, the above type analysis leads one to diagnose
errors made by children in hopes of specifying a reteaching task. However,
this search is often futile because emphasizing computation does not
necessarily lead to instructional procedures relating to the nature of
rationals or the operations. This is seen in a study (Gardner, 1941)
which used Brueckner's error analysis procedure to study some 24,000
computations with fractions done by Scottish children. In the four
processes, the most common errors were considered to be due to lack of
comprehension of the process or use of the wrong process. These accounted
for 36 percent of the errors in addition and over 50.percent in division.

To summarize, the mathematical structure paramount under the inter-
pretation of rational numbers as fractions is a highly specific set of
procedures or algorithms. These algorithms focus on the manipulation of
fractions at the symbolic level. The mathematical goals of this inter-
pretation can be thought to be self-contained. That is, these objectives
need not be thought of as prerequisite to later mathematics, although.
they certainly can be looked at as a basis for manipulation of algebraic
expressions.

The corresponding cognitive structure is a set of skills. It is not
necessary under this interpretation to assume any other structures under-
lying the skills. The prerequisites for these skills would be skill in
computation with whole numbers and not developed concepts of part-whole
relationships or proportionality.

The major instructional strategy is diagnosis and remediation both
based on elaborate task analysis.

Rational Numbers as Equivalence Classes of Fractions

The previons section of this paper described the arithmetic of
fractions as an interpretation of rational numbers. This section will
focus on the rational number as a set of ordered pairs of integers. The
first step in this development is to define equivalence of ordered pairs
(fractional form): a/b = c/d <=> ad = bc. In other words, equiva-
lence of ordered pairs is defined in terms of equality of integers
(or whole numbers). Using equivalence, rational numbers are defined
as per Scandura (1971),

one-half: 11/2, 2/4, 3/6, ...1 or

one-half: {a /b I a/b = 1/2}.

Then the set of rational numbers is the set of equivalence classes
of fractions a/b, b ¢ 0, under the relation =. One can picture such a
-et of pairs as in Figure 1.
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Figure 1. Several member6 of the equivalence class for the rational
number 1/2.

As with any set of mathematical objects, the interesting thing to do
is to work with them. For example, if addition is defined as follows:

ajb + cid = ad + cb
bd

wheze a/b, c/d are representative elements from equivalence classes, there
is a need to shoo that 3/6 + 4/9 = 51/54 and 1/2 + 4/9 = 17/18 are
equivalent. That is, it must be shown that addition,(or multiplication)
is quite unique.

It should be noted that it is the definition of operations which
differentiates the rational numbers (a field) from the set of ratios or
rate-pairs (which behave somewhat like elements of a vector space). This
distinction is reconsidered later in the paper.

cif

The final activity in this interpretation is the study of the pro-
perties of rationals under operations. This study makes extensive use of
the equivalence class notion in establishing the properties of an ordered
field. '

In coping with the mathematical notions of the equivalence class
interpretation, the child must develop certain underlying concepts. One
principle concept which must be developed is the notion of an ordered
pair of numbers to represent reality. This notion entails three phases.
The child must learn to observe reality in terms of coordinates.

1 I .5
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That is, he must observe a situation, see its parts, and identify these
parts in order. The second phase is a representation phase; the child
must learn appropriate symbolic structures with which to represent a
coordinated reality. A closely related third phase involves learning
to correctly identify the symbolic representation with the ordered
parts of reality. In particular, with rational numbers the child must
learn to identify part-whole situations, learn verbal and numerical codes
for these, and learn to correctly identify a code (fraction) with a
part-wnole setting. As a cognitive capstone of this ordered pair
concept set, the child must realize that a part-whole setting can be
seen in a set of equivalent ways, and that the various fractions which
represent the elements of this set are equivalent.

The basic instructional strategy related to this conceptual develop-
ment is experience with a wide variety of part-whole settings. Scandura
(1971) suggests four such settings. The first of these (and, for Scandura,
the most important one) is the static comparison between a set and a
subset thereof--which he identifies as a state-state comparison.

(A A A B B B) ((AAA) (BBB)}

The picture above depicts two state-state comparisons. Looking at the
left-hand set, ore sees that in this set of six elements, three are A's.
In the right-hand picture, the same set is seen to have two equipotent
subsets. Thus, of two sets, one is a set of A's. From such experiences,
the notions of fractional representation (3/6, 1/2) and equivalence
(3/6 = 1/2) develop.

While the above setting represents observations of static phenomena,
the other three settings entail the observation of the active manipulation
of parts and are briefly summarized below.

Type Action Symb. Rep.

State-Operator Divide 3 cookies among 5 persons 3/5

Operator-State Use 5 of a dozen eggs 5/12

Operator-Operator Cut a pie in eighths, serve 5 5/8

Instructional settings based upon these part - whole comparisons form the
basis for understanding of the ordered pair notion including the idea
of equivalence.

The notion of ordered pair representation of fractional situations
culminates in the understanding that these ordered pairs are numbers.
This understanding calls for at least two things. First, the child must
be able to relate this new set of numbers (a set of equivalence classes
of ordered pairs) to the whole numbers with which he has dealt: In
what ways are the new numbers different, the same, etc.? Does this new
set contain the old (e.g., 4:: 8/2)?
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The second ability or concept set which a child must possess to treat
ordered pairs as elements of a number system is the notion of operations
consistent with the fractional and equivalence notions discussed above.
Within the context of ordered pairs, Scandura (1971) sees the operations
are derivatives of these notions as is illustrated in Figure 2a and 2b.

Figure 2a. 2/3 + 1/5 Figure 2b. 10/15 + 3/15

In Figure 2a, we see a part-whole diagram which can be represented by
2/3 + 1/5. Figure 2b shows the use of equivalence in dividing the thirds
into five pieces and the fifth into three pieces. This can now be written
10/15 + 3/15 = 13/15.

To master the subdivision of parts concept that is inherent in
developing concepts of operations (i.e., addition, multiplication), the
ability to partition is needed. This notion is illustrated in the follow-
ing activities:

1. Here are 15 plants and 5 pots. If all are the same, how many
plants per pot?

2. Divide this rope into 5 equal pieces.

3. Divide these crackers among 4 people.

It should be noted that a general notion of partitioning includes both
discrete and continuous quantities.

When interpreting rational numbers as ordered pairs, the principle
mathematical idea is that of c -alence class. From this mathematical
idea flows the notion of opera,.ons on rationals and also the properties.

Working on rationals within this interpretation, the child must be
able to assign a pair of numbers to a part-whole situation. This, of
course, entails the ability to logically handle the part-whole relation-
ship in both the discrete and continuous cases. The ability to handle
class inclusion may be very important in the former case, while partition-
ing plays a role in the latter. Partitioning also plaYs a role in the
ability to see a part-whole situation in equivalent ways which forms
the basis for the notion of equivalence. With respect to the notion of
equivalence within the ordered pair interpretation, the ratio aspect
comes only as a formal capstone. The concepts of operations are derived
from the notions of ordered-pair and equivalence with partitioning again
being a principle ability.
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Rational Numbers as Ratio Numbers

A second interpretation of rationals which leans heavily on the
ordered pair notion can be developed in response to the following question:

In a comparison in which 1 is paired with 8, 2 with 16, 3 with
24, etc., what is paired with 1?

Put more symbolically, (x, 1)^ (1, oce, (2, 16)g (3, 24). Skemp (1964)
uses this question as the basis for developing another interpretation of
rational numbers.

In response to this quer, x can be thought of as the number indicated
by the pair (1, 8) or to avoid confusion 1/8. In considering the pro-
portion (y, (1, 8), y should be twice x, or

y = 2 1/8.

If this is interpreted as repeated addition, we get y = 1/8 + 1/8. The
classic question now arises. Is 1/8 + 1/8 = 2/16? Using knowledge of
proportions and in particular equivalence, we get

(y, 2)Z (1, 8) <=> 8y = 2

or y = 2/8. Thus, 1/8 + 1/8 should equal 2/8 to be consistent with this
definition of equivalence.

Operations on the ratio numbers proceed from the notion of equivalence
and equivalence classes. For example, we know the elements equivalent to
(2, 3) can be generated by mutliplying 2 and 3 by any constant k. This
class is

{(2, 3), (2x2, 2x3), (3x2, 3x3), (8,12), (10, 15), ...I.

Similarly, the class equivalent to (1, 5) is

{(1, 5), (2x1, 2x5), (3, 15), ...I.

The notion of equivalence also provides a rule for filling in the following
number line:

x y z 1 ...
1 2 3 4 5 ... 15 ... 30 ...
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For example:

(x, 1) = (1, 15)

(y, 2) = (1, 15)

(z, 3) = (1, 15)

so

so

so

x = (1,

y = (2,

z = (3,

15)*

15)

15)

or 1/15

or 2/15

or 3/15.

The correspondence becomes

1/15 2/15 3/15 4/15 ... 10/15 11/15 12/15 13/15 ... 1
I 2 3 4 10 11 12 13 15

Addition can be defined using this number line. For example, to add
2/3 + 1/5, we look at the equivalence classes for 2/3 and 1/5. In them
we find 10/15 and 3/15. Looking at our double labeled number line, we
see that 10/15 + 3/15 would'correspond to 10 + 3. Thus, the sum is
13/15. Combining the ideas from the last two paragraphs gives a strategy
for addition: Namely, study the equivalence classes and add pairs with
the same second element. One can see the arbitrary nature of the addition
strategy creep into the above approach. On the basis of the ratio notion,
the much more natural definition is the vectoral one:

(a, b) + (c, d) = (a + c, b + d).

As in the previous interpretation, operations in the ratio interpretation
are developed on the basis of a relationship to counting numbers.

One can see that, from the point of view of the child, ratio numbers
are a sophisticated entity. The basis for development is 'the notion of
ratio based upon symbolic control of the proportionality schema. As
Lovell (1971b) and others have shown, this schema or capability is not
fully developed until later adolescence. The operations on rationals
as developed under this interpretation, although algorithmically simple,
are sophisticated in concept. Ability with them demands of the child the
ability to handle equivalence symbolically and to "transfer" number line
concepts to these ratio numbers. The child must be able to "scale" a
number line in any number of ways.

The instructional structures which will promote these notions are
primarily symbolic. Dividing the unit intervals in a number of different
ways would help establish the positional noti6.,%'of dm ratio number as
well as illustrating equivalence. For example, folding a one meter strip
of adding machine tape into three and six parts would lead to the positional
idea of 2/3 and the equivalence of 2/3 and 4/6. In this respect, the ratio
number interpretation is a sophisticated version of the measurement
interpretation which will be considered later in this paper.
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Rational Numbers as Operators or Mappings

In the previous two parts of this paper, rational numbers were
associated with the mathematical notions of computation, sets, and
ratios. Another mathematical interpretation of rational numbers is
based on mapping or operators. This can be seen either as discrete map-
ping of finite sets onto finite sets, or it can be seen in the mapping
of the Euclidean plane onto itself. The latter is illustrated in Figure
3.

Figure 3. Rational numbers as operators.

Under this mapping, the point Q in the plane is mapped onto point Q'
collinear with P such that PQ'/PQ = k. In Figure 3, k = dl/d2 = 2/3.
Thus, the rational number 2/3 becomes associated with a mapping which trans-
forms line segments into line segments 2/3 their original length. This
mapping of the plane onto itself is called a dilatation Or a similarity map
and is determined by the point P and the ratio of similitude, in this case 2/3.

According to the mapping interpretation, one can think of the rational
number p/q as a transformer or operator changing a geometric figure into a
figure p/q times as big. The relationship between the object and its image
depends' on p/q. If Ip /qi < 1, the image is smaller than the object.
If Ip/q1 > 1, the image is larger. If 1p/q1 = 1, the image and object
are congruent.

Under the mapping illustrated in Figure 3, objects six units from P
would be mapped onto objects four units from P. Thus, the 4/6 operator is
the same as the 2/3 operator, or 4/6 2/3. Indeed, there are an infinite
number of operators equivalent to 2/3. Another concrete way of consider-
ing equivalent rational fractions with respect to dilatations is to compare
the length of a segment with its image segment. Thus, under a "2/3" trans-
formation, a segment of length twelve would map onto one of length eight, a
segment of length thirty-six with one of twenty-four, and so on. The frac-
tions representing these comparisons, 8/12, 24/36, etc., would be equrcrgrai
and would be of the class "2/3."

The fact that there are an infinite number of operators equivalent to
2/3 is more vividly seen in the "finite set" representation (Dienes, 1971).
Suppose two boxes of crayons are given to every three children. This
illustrates, in Dienes' parlance, a two-for-three operator. Since under
this condition, twelve children would be equipped with eight boxes, we
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could say that these sets of twelve and eight are in the fractional state
2/3. There is an infinite set of sets in this state. Equivalence can
also be seen in operators. If we have a "four-for-six" operator and
twelve children, we again need eight boxes. Thus, twelve and eight are
also in the 4/6 state. Thus, the operators two-for-three and four-for-six,
doing the same thing, are equivalent.

What happens when.one such rational operator is followed by another?
For example, take a segment twenty-four units long. Under a 2/3 operator
or mapping, this is paired with a segment sixteen units long. If this
new segment undergoes a 1/4 mapping, the new image is four units long.
Looking at the twenty-four unit state and the final four unit state, one
might say that the composition of 2/3 followed by 1/4 leads to a 4/24
mapping, or equivalently 2/12 or 1/6 mappings.

If two mappings, 2/7 and 3/5, are combined, the relationship to the
common notion of multiplying fractions is obvious.

35 units

35 units

14 units

14 units

--> 10 units

4 units

> 6 units

) 6 units

>12/5 units

) 12/5 units

This orientation leads naturally to an exploration of a/b followed
by c/d or in expression form: a/b op c/d. For example, a/b op b/a = ?
p/q ID 1/1 = ? These questions lead to the notions of identity and
inverse operators. Similarly, the use of three fractional operators and
order of operators leads to the associative and commutative properties.
Dienes (1971) points out that these properties transfer naturally to
the related fractional states. Thus, the notion of fraction as an operator
leads to the idea that the rational numbers form a group under multipli-
cation.

One problematic aspect of focusing on the operator interpretation
of rational numbers is the attempt to explain "addition" in these terms.
This problem arises because this model of rationals is again intimately
tied to the ratio notion, and the operator is essentially multiplicative.
As Dienes (1971) suggests "the multiplication nrocedure is much simpler,
from the structural point of view, than the addition procedure" (p. 152).

The "trick" of addition is in choosing an initial state such that
operations by two fractional operators yield whole number results. Thus;
if we are looking at 1/3 and 2/5, an initial st te of 30 would be
satisfactory. Under 1.3 we get: 30 > ) 10. Under 2/5
we get: 30 >12. Adding t e final states we get:
30 1/3 + 2/5 >22. Now it is easy to see that 30 is mapped

121



115

to 22 as follows: 30 22. Thus,l /3 + 2/5 = 11/15.
Again, to quote Dienes (1971) It is in the search for this initial stare
that the technique of finding the common denominator is disguised" (p. 152).

One concept whit.h an operator model of rationals illuminates is
division. Thus, to divide 2/3 by 7/8, the question is "What operator k
will take 7/8 to 2/3?" 14 know from previou work that:
1 2 3 and 7/8 >1. Combining, we
get: 7/8 >2/3. Thus, 2/3 = 7/8 = 2/3 x 8/7,
or in general, a/b p q= a b x q/p.

There are many cognitive structures which a child must develop in
working in this interpretation of rationals. As in the last two inter-
pretations, the child must associate a pair of numbers as an entity, but
since this develops rather naturally in the activities noted, it will not
be considered further. Three notions are critical to this interpretation.
The first is the notion of proportion. As has been suggested by Copeland
(1974) and Lovell (1971b), the schema of proportionality is not fully
developed until the stage of formal operations. However, the rational
number notions in this interpretation can be developed as concrete gen-
eralizations about a large number of concrete situations. Thus, these
notions from the point of view of the child can be considered prepro-
portional. It should also be noted that the fraction notion in this
interpretation is based on the quantitative comparison of two sets or
two objects; hence, part-whole or class inclusion notions are not central
to the interpretation.

The second structure which a child must develop is that of compo-
sition. Thus, the child must see one transformation followed by another
as a whole. Further, he must be able to conceptually replace these trans-
formations by a third (their product). Because the operation of addition
is not a composition of this form (that is, a composition of functions),
Dienes considers it structurally more difficult than multiplication. Indeed,
within this interpretation, this is true from the point of view of the child.

The third structure which is central to the operator notion is that
of properties, particularly those of identity and inverse. Underlying
this understanding would be a generalized reversibility notion, that is,
the ability to give reversibility arguments in many different identity
situations.

Without further elaborating on the mathematics generated by focusing
on rational numbers as operators or on the related cognitive structures,
let us consider the instructional underpinnings. If one considers the
continuous model (i.e., dilatations of the plane), the obvious related
instructional activity is work with similar figures. Perhaps the simplest
form that this activity can take is the making and measuring of scale
drawings on graph paper. Children from the ages of eight years or so
bring numerous modeling experiences to mathematics class; hence, these
activities fall within the natural frame of reference of the child.
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This kind of mapping can be simplified by simply pairing segments using
fraction operators. These activities or "realities" for the child are

illustrated below.

Story 1

Here is a house. It belongs to Here is part of another
house. It belongs to Mr.
Smith and is smaller than
Mr. Jones' house, but is
exactly like it. Can you
finish it?

Mr. Jones.

How tall is Mr. Jones' house?
How tall is Mr. Smith's house?
Mr. Jones' house is times as tall as Mr. Smith's house.
The side wall of Mr. Smith's house is 5. meters. How tall is the
side wall of Mr. Jones" house? meters.

Story 2

These are lines (pardon the mathematics) in Line Town.

Bill Line is 4 cm tall. Jill Line is twice as tall. How tall is Jill?
. B111 Line is twice as tall as Tiny Line. How tall is Tiny?

. Giant Line is 16 cm tall. He is twice as tall as
Line.

Two things should be noted concerning programs of activities as suggested
above. While Story 2 is simpler than Story 1, in scme ways, the one
dimensional situation is more "abstract" in the sense of being outside
the range of experience of the child.
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This "abstract" nature is related to the second point. Story 2
demands a more direct knowing of the notion of proportion than does
Story 1. Particularly when dealing with equivalence, proportion is
central to approaching rationals through a (multiplicative) operator
approach. The activities above must be considered "preproportional"
while a study of the.rational numbers as abstract members of a system
must surely be "postproportional."

Dienes (1971) uses finite sets and exchange games as a means of
making fractional operator6 concrete. Using the Dienes notion, there

'

are numerous distributing problems which can be made up involving exchange,
just as correspondence can be seen in "giving one to each" activities.
Exchange activities, such as two balls are given to each of fodr players
in tennis (2 for 4 operator) or seven magazines for three students in
art class (7 for 3 operator) are easy to generate. Similarly, equiva-
lence and the properties of multiplication are easily simulated. It
should not be considered that such games are the whole story. Once again,
these games are pterational number games. However, these games are in
important wlys psychologically simpler *.han the stories above, because
the notion of proportionality arises in :he simpler form of measurement
division. That is, the child simply has to divide the balls into sets
of two and the players into sets of four.

Again, it can be asked, "What are activities which precede those
noted above?" Dienes' answer'would involve games like the following:

1. There are 18 students in the room. How many teams are there
for art class if 3 are on each?

2. The tennis club has 20 members; It takes 4 persons to play
doubles. How many doubles can there be at one time?

3. Here are 20 animals. How many cages are needed if 5 animals
reside in a cage?

4. Here are 15 cars at the landing. If the ferry can take 3 per
trip, how many trips must it make? (Nelson & Sawada, 1975)

5. How many rods make up a rod?

These activities could all be classified as measurement division activities.
Measurement division activities require only the ability to make sets of
a required number--that is, some form of counting algorithm.

In summary, we can ask the question, "Where does focusing on the
'operator' or 'mapping' interpretation of rational numbers lead?" We
have seen that this interpretation leads nicely to the notion of. multi-
plication of rationals and that it leads naturally to the group properties.
It does not naturally lead to considering rational-numbers as measures
or the related additive activities, and because of its ratio basis, it
does not naturally lead to the field axioms. Thus, the primary contri-
bution of the operator notion is an algebraic one.



118

There are three primary cognitive structures associated with the
operator or mapping interpretation of rationals. The first of these is
the ability to compose--that is, to conceive of the product of two
operations as a whole, representable by some new operation. The second
is a general notion of reversibility which can support the abstract
notions of inverse and identity. The third is proportionality. However,
within the context of a discrete model of this interpretation, prepropor-
tionality notions serve to support the concepts of rational numbers.

Rational Numbers as Elements of a Quotient Field

In the previous section, rational numbers were interpreted as"opera-
tors or mappings which led to consideration of their algebraic nature. In

this section, the field axioms will be assumed, and rational numbers will
be interpreted as elements of a quotient field.

Elements of a quotient field are numbers of the form b/a which
represent solutions to equations of the form ax = b, where a and b are
integers. Following Birkhoff and MacLane (1953), it can be established
that in a field such quotients are possible and unique (a # 0).

The following theorems can be established for quotient fields.

1. Ain = p/q <=> mq = np

2. (m/n) + (p/q) = mg_ ± np
nq

3. (m/n) x (p/q) = mp/nq

4. min + (-m/n) = 0

5. (m/n) x (n/m) = 1

The establishment of these theorems follows from simple work with equations.
For example, relating to theorem 1:'

< = >

< = >

< = >

< = >

< = >

2/3 = 4/6

2/3 x 3 = 4/6 x 3

(2/3 x 3) x 6= (4/6 x 3) x 6

2 x 6 = 4/6 x (3 x 6)

2 x 6 = (4/6 x 6) x3

2 x 6 = 4 x 3
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Thus, using field properties with equations gives a means of testing
equality of quotients.

Similar arguments can be used to generate a general algorithm for
addition. For example, to interpret the algorithmic meaning of addition,
consider the following:

If x = 3/4 and y = 2/7, whet is x + y?

x = 3/4 y = 2/7

<=> 4x = 3 < = > 7y = 2

<=> 28x = 21 < = > 28y = 8

Combining we get:

Si

28x + 28y = 29

28 (x + y) = 29

x + y = 29/28

3/4 + 2/7 = 29/28

In general, an addition algorithm for m/n and p/q is generated as follows:

x = min Y = p/q

<=> nx = m <=> qy = p

<=> qnx = qm <=> qny = np

Combining we get:

qn (x + y) = qm + np

x + y = qm + np
qn

:.m /n + p/q = qm + np

nq

Similarly, if min and p/q are quotients, it is a simple application of
equation solution ideas to generate multiplication:

x = m/n

<=> nx = m

y = pig

<=> gy = p
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nxqy = mp

<=> nqxy = mp

<_> xy=m
nq

:,m/n x p/g

nq

Thus, if rationals are defined to be the set of pairs of integers b/a
which satisfy equations of the form ax = b for any a and b, a # 0, then
rational numbers form a quotient field and equivalence, addition, multi-
plication, and their properties must be defined as suggested above.

The above field of rationals is ordered by defining a/b > 0 to mean
that the integer a b > 0.(Birkhoff & MacLane, 1953, p. 49). This arises
naturally as follows: 3/5 x 52 = 3 x 5. Since 52 is positive, 3/5 and
3 x 5 must have the same sign--in this case both positive. Similarly,
3/(-5) x ( -5)2.= 3 x (-5). Since (-5)2 is positive, 3/(-5) and 3 x (-5)
must have the same sign--in this case, negative.

The quotient field interpretation of rational numbers clearly relates
rationals to abstract algebraic systems. On the surface, however, this
interpretation would seem the most remote from school mathematics, Yet
Freudenthal (1973), in Mathematics as an Educational Task, argues that
the quotient field interpretation is the most meaningful setting for
rational number study. Discussing operations on'rational numbers he
argues as follows:

The method follows a clear pattern, and at the same time they
[the operations] are meaningful processes. There is not any
question whether numerators or denominators are equalized,
whether fractions are inverted or not. ...One may regret
that the intuitivity of fractions has been lost though it is
doubtful whether it ever existed. (pp. 226-227, emphasis mine)

Freudenthal (1973) further argues that this approach defers the necessity
of defining rational numbers as equivalence classes "the didactic value
of which is problematic" (p. 227).

As a further argument in favor of this approach, Freudenthal compares
rationals with rational expressions. This approach outlined above,
extending the integral domain of the field of quotients (integers -'
quotients of integers) parallels that of extending the polynomials to
rational expressions. Thu's, the development of the rationals is a pre-
cursor to algebra or, indeed, marks the first study of algebra. This
notion is a recurring theme that will be returned to later in this paper.
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It is clear that this interpretation of ratic 1 numbers is not
closely related to the natural thought of the chili.. As suggested above,
the operations on and properties of rational numbers are developed in a
deductive manner. Thus, the adolescent must be capable of formal thinking
or reasoning from a hypothesis in order to appreciate this, particular
rational number interpretation. In particular, he must be confident that
equations behave consistently and be capable of generating and working
with implications in a symbolic form.

As a precursor to this more formal deductive ability, the child must
be capable of what might be called predeductive thinking, or concrete
deduction. Given the restrictions or "assumptions" of a situation, the
child must be able to draw conclusions or see patterns implied by it.

The major cognitive structure underlying the notion of quotient is
partitioning. To reiterate what has been said earlier; this is the
ability to divide an object or objects into a given number of like parts.
It is this structure which concretizes this interpretation of the rational
numbers. Thus, x = 3/4 means 4x = 3, which can have the concrete meaning
"x is the number we attach to each part which results when we divide three
crackers into four equal parts."

As Freudenthal suggests, the system of rational numbers, especially
the general algorithms, in this context cannot be understood without
considerable algebraic practice. Fortunately, this is rather simple and
is done as usual practice in junior high school mathematics. The principle
base for developing rationals becomes solving equations of the form
a o x = b, where a, b are integers and where "o" is usually interpreted
to mean multiplication.

Again, one can ask, "What activities should occur prior to such
equation solving?" If we. look at the equation 3x = 6,, or better yet the
equation 5x = 6, we see the symbolic representation of the question:
There are 6 pizzas for 5 children. What is an equal share for each?
Here again, partition division activities come up as a preacttvity to
fraction or rational number work. The second equation is representative
of partitioning continuous quantities--which is important in developing
the notion of nonintegral rationals.

We can carry this activity back further in two ways. One is the
partitioning of discrete sets evenly: Here are 20 letters; they are
distributed evenly to 5 mailboxes. How many go in each mai:%box? A
possible algorithmic activity which relates to this form of division is
a "dealing" activity. The other precursory activities to partitive
division, particularly of the continuous variety, are' those such as
paper folding into congruent pieces. For example, the entertaining
activity df "dragon curves" elicits appropriate behavior.
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Here is a strip of calculator paper.
Fold it exactly in two.
Do this again with the folded strip.
And again.
Unfold the paper. How many parts do you have?
What can you say about the parts?

Here is a picture of a shape you can make. It looks like a duck.
Make as many shapes as you wish with your strip.

Of course, the important aspect of these kinds of activities is the
process of dividing an object, particularly a linear one, into congruent
pieces and the visual experience of seeing part-whole relationships.
Coloring some parts red and others yellow would allow questions comparing
the number of "ed with the total number, etc. This might well be an
appropriate preactivity for the notion that 3 x 1/8 = 3/8. However, this
is not truly related to the equation solving which is central to the
quotient field factor of rationals. Nonetheless, the more or less free
activity described above can be given a more explicit rational number
format. For example:

Measure two strips of calculator tape'. Make one 3 decimeters long and
the other 6 decimeters. Mark off the decimeters on the strips.

1 1 I I

1 1 '1 1 1 1 1

Take the 3 decimeter strip.
Fold it evenly in two.
Fold it again.
Unfold it. How many parts do you have?
How long is each part? > 1 decimeter?
Can you name its length in decimeters?

129'i

< 1 decimeter?
decimeters.
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Take the 6 decimeter strip.
Fold it evenly in two.
Fold it again.
Once,more.
Unfold it. How many parts?
How Tong is each? > 1 decimeter? < 1 decimeter?
How might you name its length? decimeters.
Tell.something about the folded parts of the two strips.

Here the activity directly precurses the study of the equations like
4 x= 3 and 8 y= 6 and suggests their equivalence.

A major feature of the quotient field interpretation of the rationals
is that the algorithms are derivable from equations via the field properties.
There is no initial question of "common denominators" or their importance.
By using the notion of measurement, one can provide the opportunity for
concretely developing algorithms. For example, one could use all our old
rulers divided into 16ths as "Fracto-Rules," that is, addition slide rules
(see Figure 4).

\ -7

Figure 4. An example of addition slide rules.

Figure 4 illustrates 3/4 + 3/8 =
whether adding, is possible. Afte:
see an algorithm which enables him
first step towards this would be a
3/4 + 3/8 = 6/8 + 3/8 = 9/8.

1/8. There is no question as to
many such exercises, the student can
to find the sum without measuring. A
simple counting which would give

Experience with several such rulers broken conveniently into twelfths,
eighths, or twenty-fourths would be background for the addition algorithm.
In this case, the student would be deriving a concrete algorithm from the
"axioms" of the setting. It should not be thought that such concrete
settings will generate the general algorithm for adding fractions. It

will serve as a basis for what Collis (1974) would call a "concrete
generalization"--the organization of a variety of exemplars under a
rubric. And, it certainly will provide considerable working knowledge
with rational numbers.

In summary, the quotient field interpretation of rational numbers
leads to notions of abstract algebra as well as the algebraic experience
of domain extension. The fundamental prerequisite experience lies in
the algebra of equation solving. A second fundamental prerequisite is
the experience of deriving a definition for an operation from a setting.
This second prerequisite is important because it is with the operations
on rationals that a child has first experiences with an operation in the
abstract, that is, one which must be defined and does not arise from
simple intuition.
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Prerequisite to both these experiences is work with partitions of
continuous quantities.(As has been noted earlier in the paper, this also
involves such notions as conservation of length and area).

The cognitive structures necessary for coping with this interpre-
tation are those of formal operations, particularly the ability to generate
implications. More primitive, or at least earlier, structures are those
of concrete deduction and partitioning.

Rational Numbers as Measures

The measurement interpretation of rational numbers has been implicitly
discussed in several earlier sections of the paper. In this part of the
paper, rational numbers will be interpreted as points on the number line.
Fundamental to this interpretation is the notion that the unit for the
number line, once chosen, can be divided into any number of congruent parts.
The rational number a/b < 1 then can be seen as a. measure of a of b congruent
parts.

Since the unit can be divided into any number of parts, adding simply
means laying two vectors end=to-end and reading the result (see Figure 5).

I I

1
lr

F111,111111.1 1
1

1

2

Figure 5. Addition of rational numbers as measures.

Thus, 1/3 + 1/4 = 7/12. Of course the divisions of the units must be
chosen so that it "works;" that is, the end of our second vector is on
an exact division of the unit.

A similar development can be made for other operations. For example,
in 2/3 x 3/4 we ,can break each fourth into 3 parts and count up 2 such
parts for each fourth. Hence, we get six parts and only have to determine
how these parts ,Jartition the unit (into twelfths).

The measurement interpretation of rational numbers As inherently
an analytic interpretation--that is, relating to point sets. However, the
notion of "flexible partitioning of the unit" allows the algebraic notions
of operation and equivalence to emerge.

It should be noted that measurement is the natural locus for con-
sidering order. All of the order properties (e.g., trichotomy, anti-
symmetry, transitivity) arise naturally out of measurement situations.
Previous sections showed that order could be given an "algebraic" inter-
pretation. However, that interpretation was not intuitive and has limited
instructional value.
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Many of the cognitive structures necessary for coping with the
measurement interpretation (e.g., partitioning or concrete deduction)
have been discussed elsewhere. There are three such structures which
seem particularly important here. The first is the notion of a unit
and its arbitrary division. The child must realize that the uLl.it is
invariant under partitioning, and he must also realize that one can
partition the unit into any number of congruent parts. Second, the
child must be able to conceptualize part-whole relationships in this
context and recognize equivalent settings arising from partitioning of
the unit (1/2 = 3/6). Third, the child must develop the concept of an
order relation. This involves both the ability to order physical reality
and the ability to use correctly the symbolic order statements. Under-
lying these structures are more general structures, conservation of
length and substance, and a general notion of ordinal number (see try.:
paper by Brainerd).

Preacti:ities for the measure interpretation of rational numbers
can be developed from both forms of division--measurement and partition.
Using a unit of convenient length, say 24 centimeters, one can use
various rods or strips to illustrate the variety of partitions. Using
colors, one can measure 2/4 or 3/6 and vividly see equivalence (see
Figure 6).

WiliveirMATATAIffellral4. 4

Figure 6. Various ways of partitioning a given unit.

Activities with a varying unit, measurement division activities, are
also important in this development of the measurement interpretation of
rational numbers. Questions given below illustrate this point.

If this

If this

This

is the unit, then this 'represents two.

is the unit, what is this' 1 ?

L

Ordering of lengths is a natural activity, and the processes of
comparing and seriating find numerous settings even for very young
children. Such activities as described in the foregoing paragraph
illustrate the fact that the measurement interpretation of rational
numbers allows for direct contact with rational number concepts.
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Rational Numbers as Decimal Fractions

A rational number is any number which can be.expressed as a termi-
nating or repeating decimal. This definition is the basis for the
decimal-fraction interpretation of rational numbers. The mathematics for
this interpretation needs little elaboration; the operations are just
extensions of those for whole numbers, with division now not needing a
"remainder." The numeration system covers the distinction between
rationals and whole numbers both in terms of operations and the "ratio"
aspect. If rational numbers were to be developed solely from this
viewpoint, the prealgebraic experience with operations discussed
earlier in the paper might be lost. In addition, pre-experience for
rational expressions would not exist. However, rationals as decimals
would serve as an adequate basis for analysis and would lead very easily
to a discussion of irrationals. For the purposes of applied mathematics
and computing devices, our set of rationals might even be limited to
numbers expressible as 6 or 8 place decimals.

Rational numbers as decimal fractions are also the numbers of
estimation. This is true whether one is measuring to the nearest milli-
meter or stopping an algorithmic search for zeroes of polynomials when

lxi+1 xii < c. Rational numbers enter into numerical analysis problems
and in the Cauchy sequence definition of real numbers.

The cognitive structures necessary for a child coring with decimals
are similar to those mentioned for measurement. Here, however, there is
more emphasis on ability to generalize in the symbolic domain. That is,
the child must be able to generalize the decimal numeration system on its
algorithms to this fractional situation. Also, the child must be able
to attach a "standardized" description to part-whole situations. Thus,
dividing an object into six congruent parts, taking one and saying "one
of six" or "one-sixth" is a natural extension of counting; saying "about
.16" is not. Thus, measuring and estimating are critical. The latter
entails a general notion of unit and the ability to think hypothetically,
even if about a real situation.

The activities from which decimal fractions proceed are in three.
areas. Rather obviously the representation and standard operations arise
out of the decimal numeration system. Thus, all work with whole numbers
and their operations with particular reference to numeration is critical.
This work can lead directly to decimal fractions as seen in Frederique
Papy's work with the Mini-computer.

Measurement activities are a second obvious basis for decimal fraction
consideration. However, with decimal fraction we divide the unit in a
standard way, by successive powers of 10. A natural model for measure-
ments which generate decimal fractions is the meter with the obvious
subunits:

1 decimeter -- .1

1 centimeter-- .01

1 millimeter-- .001.

1'3 3
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Of course, this model. exists in other measurement modes as well, (e.g.,
capacity, mass, and money).

The third area of predecimal fraction activity is estimating.
Statements in the "This is about so long." vein can be refined easily
to illustrate decimal fractions as'estimating numbers. The processes
of seriating and comparing are of paramount importance as is the whole
notion of order.

Rational Numbers--A Conglomerate

In the seven previous sections of this paper, different interpreta-
tions of rational numbers have been discussed. The fact that rational
numbers have these diverse interpretations is by no means new. The work
with unit fractions and applications in the pyramids by the Egyptians
(number theory and proportions), the work of the ancient Greeks in
commensurability (analysis), and the trigonometry of the Babylonians
(decimal fractions) certainly bears this out. However, it is a major
thesis of this paper that rational numbers, from the point of view of
instruction, must be considered in all of the interpretations. From the
point of view of curriculum, it has been common to implicitly assume that
rationals had some single interpretation, and ideas were then developed
within that one interpretation. This often meant that some rational
number concept was difficult to learn (e.g., addition) or meant that, some
emphasis was deleted (e.g., algebraic aspect).

This singular rather than multisided viewpoint also effects the child
who is learning about rational numbers. Because each interpretation of
rationals relates to particular cognitive structures, ignoring a con-
glomerate picture or failing to identify particular necessary structures
in developing instruction can lead to a lack of understanding on the part
of the child. The conglomerate picture of rationals which will be charted will
identify the complex cognitive structures which relate to (or form a
foundation for) a child's idea of rational number.

As is seen in the earlier sections of this paper, the many inter-
pretations of rational numbers have themselves many related instructional
strategies. These in turn employ numerous physical and symbolic models.
Without a conglomerate view, it is easy to design instructional settings
which contain contradictory elements or models, or which do not easi
lead to the development of some rational number concept. For example,
if one interprets rationals as measures and usns a number line model,
multiplication of rationals is not naturally generated. The number line
model may conflict cognitively with an area model or an exchange model
for generating multiplicative ideas.

1 3 4
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Thus, a curriculum developer - instructional designer must ask what
the short-term and long-range objectives are with respect to instruction
in rational numbers. He must then ask how each of the interpretations
relates to these objectives. He can then select particular interpreta-
tions in which to develop and reach certain objectives. Given these,
he can then ascertain the necessary cognitive structures for meeting the
objectives and develop sequences of instructional activities which con-
tribute to the growth of these structures.'

A researcher who asks, "How does the child know rational numbers?",
must go through a similar process. He can study selected interpretations
in more detail and identify what he believes to be the most important
cognitive structures. Settings can then be developed or used which
allow one to see the extent to which a child has such structures. The
growth of such structures can then be studied developmentally. Alter-
natively, the importance of such structures can be tested. Here, one
would test the effect of having or not having some structure on attain-
ing some rational number objectives. In this case, care would have to
be taken in order that the cognitive structure under consideration re-
lated to the interpretation used in the learning situation.

What follows is an attempt to present.a more concise description of
these seven rational number interpretations. For each interpretation,
Figures 7 -9 will contain indicators of the major mathematical structures
and long term mathematical goals, the related cognitive structures, and
the related instructional structures. Some structures which could belong
to more than one interpretation will not be included in all of the figures.
For example, computation with rationals is necessary in all interpretations
but appears only under the "fraction" interpretation. The cognitive
structure of proportionality again underlies any interpretation but Trill
be charted only where it plays a most prominent role.

One step in using the conglomerate picture of rationals summarized
in Figures 7-9 is to look at each interpretation to develop some net-
work or sequence of instructional activities. This is perhaps simplest ,

to do in terms of the mathematical structure. Because the cognitive
structures relating to rational numbers are not part of the "natural
thought" of the child in the same sense as more primitive number con-
cepts, a network of these structures would probably not be satisfactory
anyway. From this mathematical network, a derived network of cognitive
structures can be developed. Finally, the network of instruction for
each interpretation can be made.

Because the important cognitive structures within the fraction in-
terpretation are skills with particular computations or comparisons, the
hierarchy inherent in the mathematical structures would have almost
direct parallels in terms of cognitive and instructional structures.
As suggested earlier, there has been much work done throughout the century
(as well as currently) in developing hierarchies of skills as illustrated
in Figure 10.
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general add tion of fractions

addition of fractions

addition of fractions
with common denominators

addition'of whole numbers

changing mixed numbers to fractions

developing equivalent fractions

finding common denominators

factors of whole numbers

multiplicatibmof whole numbers

Figure 10. A skill hierarchy for the fraction interpretation of rational
number.

However, within the other interpretations, there has been much less
work. Also within other interpretations, the term hierarchy can only'be
used loosely; hence, the term network is used instead. In Figure 11,
a very general network for the quotient field interpretation is given.
The dashed lines indicate an important, but not necessary, path in the
network. Alongside this network, the cognitive structures important to
the mathematical structures are given. In a sense, these cognitive
structures also form a network induced by the mathematical structures.

solve equations
of the form
ax = b

develop the field of rationals by
extending the domain of integers

develop intuitive
algorithms for
rationals on
number line

hierarchy of
equation
solving skills

continuous
partitive
division

discrete
partitive
division

general reasoning
from hypothesis

partitioning,
conservation of
length and area

!partitioning
correspondence

concrete
eduction

Figure 11. A general network for the quotient field interpretation of
rational number.
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Clearly, considerable work is needed in elaborating and clarifying such
networks for each of the interpretations.

As has been mentioned previously, work with these networks should
prove fruitful. For the person studying the child's conception of
rationals, the cognitive networks would be a source for hypotheses about
children's behavior in terms of age or their position in an instructional
sequence.. This research might also be suggestive of a learning path which
would be most ,congruent with a child's development.

The instructional designer would probably wish to try to form an
overall network for rational number instruction.. In studying the networks,
he could identify elements of each which might fit into an overall
instructional scheme.

In using the interpretations and related networks, two ideas
need consideration. One pertains to the underlying mathematics, the other
to instructional interpretation. Rational numbers, because they form a
field, are both additive (in the measure sense) and multiplicative (in
the mapping composition sense). Any research or development must takp
these independent notions into account. Further, physical models of
rationals Can be either discrete or continuous. The advantages and problems
of each have been discussed above. The interpretations are related but
not the same. The main feature of any continuous model is that it admits
repeated and infinitely varied subdivision, while discrete models more
readily admit counting as a strategy with less obvious emphasis on the
unit.

The picture of rational numbers developed in this paper is necessarily
a complex one. Rational numbers are seen to be algebraically significant
and pervasive in many areas of mathematics. Thus, an instructional pro-
gram which emphasizes one factor of this picture to the exclusion of others
is inadequate. Many programs today still focus on the fractional and
decimal interpretations. This ignores the algebraic antinns inherent in
the system or rationals and, in fact, leads almost nowhere. Similarly,
a position which says "with metrics all we need is decimals" is ignoring
much significant structural mathematics and applied mathematics which the
rationals provide. It is further ignoring the contributions of other factors
in understanding decimals.

The picture presented above challenges the mathematics educator to
design a set of rational number experiences which provide the child with
a balanced background. Although research is needed on this point, it
seems sensible that the measurement and operator interpretations may
represent early direct access to rational numbers, while the quotient
field interpretation seems to represent a goal for later instruction.
Further, it would appear that partitive division activities provide the
experience base necessary for an understanding of the operation of
addition. These and other fundamental questions need to be answered
before truly adequate mathematics instruction can be developed for
rational numbers.
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Needed Research on Rational Number Learning

Any research on rational number learning'must come to grips with

three questions:

1. What is meant by a concept of rational"numbers in childhood

and adolescence?

2. How do these concepts develop?

3. What are instructional mechanisms that promote this development?

These three questions parallel the notions of mathematical, psychologi-
cal, and instructional structures) developed earlier.

One direction for such research is seen in the work of Piaget on
area and fractions (Piaget, Inhelder, & Szeminslca, 1960). This work

focussed on the young child's natural concept of fractional part based
upon seven attributes: a whole composed of separable elements, that
separation can occur into a determinate number of parts, that such sub-
division exhausts the whole, there is a fixed relationship between
dividing cuts and subdivisions, that the subdivisions are equal, that
these parts are also wholes in their own right, and the whole is con-

served (pp. 309-311). These attributes were studied across several con-

figurations and denominations of fractional parts. This work and that

reviewed by Payne (see the Payne paper in this collection) suggests that
children well into elementary school do not attain the concept of frac-

tions as defined above. Yet, this concept itself is very limited if one

is considering a conception of rational numbers-. The Michigan studies

reviewed by Payne add the following rational number properties: attri-

buted symbolic control over fractions (e.g., relating words, pair symbols,

diagrams and physical instances of fractions), continuous and discrete

part-whole relationships, rational numbers whose absolute value is greater

than one and equivalent fractions. In addition, these studies also added

the notions of operations and order to the concept of rational numbers.

The conglomerate model suggested earlier identifies seven interpre-
tations which again enlarge on the concept of rational number. The

number of "attributes" added to the concept is too long to elaborate.
Such "primitive" attributes as arbitrary subdivisions of a unit, repeated

1The genesis of these ideas came from a discussion with Richard Lesh.
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standard subdivision (decimals), some aspects of the proportionality
schema, and concrete deduction with fractional phenomena are important
under the various interpretations of rational numbers. The more formal
"attributes" of general one-dimensional vector addition, composition of
function, deductive reasoning with multiplicative equations, and applying
rational numbers as measure estimates are all seen as part of a mature
concept of rational number.

Suffice it to say that the answer to question number one is very
complicated, and research questions two and three are at least as com-
plex. The remainder of this paper will be devoted to the very brief
elaboratioon two models seen as useful in pursuing these questions. An
attempt will be made to suggest general research areas and relate these to
previous research concerning rational numbers as well as research directions
posed in the area of measurement by Carpenter and Osborne (in this collec-
tion).

A Curriculum Research Model and Its Implications

Because it seems that the complex concept of rational number demands
that it be, to some extent, formally learned, one model useful in focussing
research is a curricular one. Before moving specifically to rational
number considerations, let us define curriculum research as it will be
viewed in this section. Romberg and DeVault (1967) see mathematics
curriculum as the total school mathematical experiences of the child- -
with input from the learner, teacher, instructional procedures, and mathe-
matics programs. In this section, we will emphasize the latter two input
sources into a system of instruction in rational numbers. Romberg and
DeVault (1967, p. 108) lay out the steps in developing such a system
(see Figure 12). The companions to this paper are efforts in the "analy-
sis" stage of this model, with the work of Payne, Muangnapoe, Green,
Williams, Choate Galloway, and Ellerbruch being examples of methodologies
appropriate for the "pilot" stage (see the Payne paper in this collection).
Although well developed concepts of rational numbers have been known for
thousands of years and much research in this century has been devoted to
aspects of rational number learning, the work of Payne et al. suggests
that much research needs to be done at the analysis and pilot stages of
the Romberg-DeVault model.

The seven interpretations of rationals also suggest a comprehensive
instructional analysis. A major' question is "Can a mathematics program
Le developed which appropriately emphasizes each of the interpretations
of rational numbers?" In most previous research, this particular question
has been ignored. This has led to programs in which only certain objec-
tives within the study of rational numbers were reached or even considered,
while others were ignored. There is a need to develop a set of objectives
for rational number learning, test this set against the seven interpretations
to see if it is comprehensive, and to relate it to the outcomes of instruc-
tion in other aspects of mathematics learning. For example, if the
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Analysis

Summative Evaluation

Pilot

Validation

Development

Figure 12. Romberg and DeVault's steps in developing an instructional system.

operator interpretation is ignored under rational numbers, are the mathe-
matical directions of this interpretation developed under some other
mathematics objectives set (e.g., integers or transformation geometry)?
If the fraction interpretation is de-emphasized, are these outcomes
important and, if so, are there compensatory objectives available in
other rational number interpretations or topics?
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A related need is to see if instruction under one interpretation
of rational numbers conflicts with instruction under other interpreta-
tions. For example, Payne, in his review of research on rationals,
conjectures such a conflict between a set based approach (ordered pair
interpretation) and measurement. A well developed instructional analy-
sis could point out potential conflicts in the effects of instructional
activities. For example, it seems logical that the operator interpreta-
tion would conflict with the objectives related to adding rationals.
Conjectures of conflict could be carefully tested in a pilot context.
Where such conflicts existed, sequences could be developed which would
minimize such conflicts, while maximizing the comprehensive nature of the
rational number experience program.

The mini-max problem leads to sequence design research. A central
question here is: "Should certain rational number interpretations be
emphasized at: certain stages in the instructional sequence K-9?" A
second question is: "Are there appropriate mixes of instructional proce-
dures which can be used at various stages in an overall rational number
program?" Specifically, a study could attempt to predict analytically
the best mix of instructional procedures useful at the earliest stages
in the sequence. These mixes could undergo a careful pilot analysis
with children at various ages from 6-9.

Another form of curriculum research is longitudinal studies. Clearly,
such studies pertain to the validation of any balanced rational number
program suggested above. Such studies could help answer other questions,
however. Programs based on decimals; measurement; measurement, operators,
and quotient fields; decimals and quotient fields suggest themselves as
amenable to longitudinal study.

Specifically, with the coming of the metric system, there has been
discussion of the increased emphasis on the decimal interpretation. It
would be interesting to study the effect of a curriculum based on the
decimal interpretation of rationals. Over the last 50 years, there have
been numerous studies on grade placement which have suggested a postpone-
ment of fraction work until junior high school, with an earlier introduc-
tion of decimals. Thus, there is evidence for the feasibility of such a
curriculum. However, numerous questioL-; remain unanswered. What would
be an appropriate instructional structure with which to introduce deci-
mals? A number line, a rectangular region, a "hundredths" frame, or a
meter are all possibilities. More generally, what "fraction" background
facilitates decimal work? How does the ability to grasp the repeated
(by a factor of 10) division of a unit relate to decimal learning?
Because computation with decimals is an easy symbolic generalization
from whole numbers, to what extent are manipulative representations
useful and necessary? What is the role of calculators in such a curri-
culum, and how is decimal learning enhanced by their use? If the deci-
mal interpretation is only taught through grade 7 or 8, what are the
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limitations on the students' concept of rationals (e.g., algebraic aspects,
part-whole relationships, or proportionality)?

There are mLny studies suggested by these questions. One could care-
fully design a sequence for grades 4-6 based on the decimal factor and
follow a sample of children through it. They could be tested on
vrious aspects of rational number behavior (see following section) and
could be given general rational number knowledge tests periodically.
Such a study would have to follow the rubric of the curriculum. model.

General Rational Number Research Implementation Model

The Romberg-DeVault model described in Figure 12 is limited because
it only pertains to the second of the initially posed questions. That
is, although the curriculum research model assumes knowledge of the
development of a concept, it does not contain a component which attends ly
to the study of the rational number behavior of children and adolescents.
Because the concept of rationals is complex and because numerous in-
structional structures and representations suggest themselves, the child's
reaction and interpretation of such representations and structures is an
important component of rational number learning research. Again, the
Romberg-DeVault curriculum model does not explicitly relate to this
general problem.

A more general model or organizer is suggested by Sawada and
Cathcart2 and is illustrated in Figure 13.

941thematical and Curricular Analysis

(2)
1 I4.-Analysis of Instructional Representations

(3)
Instructional
...Variable as .

Studies

(4)
Rational Number
...Behavior

(5)
Assessment

Studies

Studies

Figure 13. The Sawada and Cathcart curriculum development model.

2
This idea was developed at the Workshop on Number and Measurement

sponsored by the Georgia Center for the Study of Learning and Teaching
Mathematics.
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A two dimensional representation of this model is misleading in that
it suggests an ordered sequence. The arrows should not suggest an
ordering, but a flow of information among research on various problems.

The earlier sections of this paper and the Payne paper discuss
research in area (1) of the Sawada-Cathcart model. In a sense, any
research devoted to answering the question, "What is the concept of
rational numbers?", would fall in this area.

The complex notion of rational numbers discussed above was expli-
cated through the use of, and in some ways developed from, a wide
variety of instructional representations. The instructional procedures
suggested for rational numbers all made use of one or more instructional
representations. One set of possible studies would consider children's
reaction to such representations. That is, such studies would attempt,
on a clinical basis, to ascertain just what it is that a child sees
when faced by a particular representation. Such research is prompted
by the problems that children may have had in working with discrete
models of fractions (see the Payne paper). It may turn out that .parti-
cular representations do not convey the desired information to the
child.

In the Payne paper there are detailsof a series of on-going Initial
Fraction Sequence studies (IFS) at Michigan which could be classified as
instructional variable studies. And, because. measurement and measure
concepts (unit, area, etc) are closely related to early instruction on
rational numbers, it is also important to study the relationship between
development of measure and rational number concepts. For example, one
such study would try to predict success under IFS instruction from the
student's concept of area.3 A similar study could investigate relation-
ships between measure concepts and rational number learning under a
number-line treatment. Another,study could consider the sequencing of
instruction on measurement and rational numbers which might answer the
question: "Is measurement study a prerequisite to rational number study."

The curriculum and instructional variable questions mentioned pre-
viously relate to, and in many cases hinge on, the ability of children
to perform or acquire certain rational number behaviors. The paradigm

3
Suggestion for some of the studies were made by members of the ,

"Rational Number Working Group" at the Workshop on Number and Measurement
sponsored by the Georgia Center for the Study of Learning and Teaching
Mathematics. Members of this group were: E. Begle, G. Cathcart, R.
Ceileski. M. Herman, D. C. Johnson, R. Kalin, T. Kieren, J. Kirkpatrick,
D. Owens, J. Payne, E. Rathmell, and H. Wagner.
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for this work is perhaps best illustrated in the work of Inhelder and
Piaget (1958) on the growth of logical thinking. Like the concept of
rational number, the concept of logical thinking is a complex phenomenon.
Piaget and Inhelder identified behavioral correlates of aspects of logi-
cal thinking and then posed critical tasks eliciting these behaviors from
children from ages 5-15. The purpose was to verify, illustrate, and
detail the stages of the growth of logical thinking. A similar study of
the growth of rational number thinking is suggested below. Some aspects
and behaviors of rational number will be impossible to study in their
"natural state." They will undoubtedly be colored by instructional
experience. It is hoped that the behaviors posed for study below will
be less affected by schooling than those regarding function and proof
discussed by Lovell (1971a, 1971c).

Relatively little data is available on relevant behaviors such as
discrete and continuous partitioning, apart from that presented by Piaget
et al. (1960). This is evidenced in the various pilot studies described
in the Payne paper (in this collection). In a study concerning the
behavior of boys in grades 1-3, Little (1974) found that in discrete
measurement and partition division settings there was very little parti-
tioning behavior, even in obvious partitive settings. (For example, here
are 15 cars, park them in 3 lots so the number in each is the same.)
Thus, research such as the following is suggested.

Three discrete and three continuous partition division settings
could be developed. These settings would involve the child in physi-
cally solving some problem. Samples of children at age levels from
5-12 could be tested in some or all of the settings. A well developed
video-recording protocol a la Nelson and Sawada (1975) could be used to
collect the data. If this were not feasible or desirable, some form of
experimenter-observer team could be employed, as well as using written
records made by the children. This data could then be carefully analyzed
to develop a set of behaviors generated by children which might be sugges-
tive of some developmental trend. This experiment could also be done
with measurement activities (discrete and rnntinuous), with equivalence
problems, and with exchange (m-operator) problems. Using older subjects
(perhaps ages 1P 15), more symbolic problems would be appropriate.
These might include settings involving arbitrary division of a unit,
solutions to quotient equations, reacting to graphs of equivalence classes,
ratio problems, and quotient problems. As suggested previously, one
goal of such research is to develop some form of catalogue for rational
number behaviors.

Since these behaviors are important to rational number learning,
instructional protocols aimed at developing specific behaviors could
also be researched. For example, are there protocols useful in develop-
ing continuous partitioning behavior? At what age do such protocols
seem optimally effective? Such questions need careful research based on
all four phases of the Romberg-DeVault model.
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The conglomerate model speculates on processes which seem necessary
to learning within a particular interpretation of rationals. Both
further analysis and experimental study are needed to uncover relation-
ships between such processes and the rational number behaviors suggested
above. For example, it would seem that conservation of area and length
might be related to continuous partitive division.

The conglomerate model is also suggestive of relationships between
rational number behaviors and learning of particular facets of rational
number knowledge. Again, research is needed to test the validity of such
suggestions. For example, does work with continuous partitioning problems
promote learning of equivalent fractions or of solution to quotient
equations (e.g., ax = b)? Payne et al. have made use of methodologies
appropriate to the study of such questions. Pilot and validation studies
should be conducted to answer questions such as those above. These studies
would also include a review of research findings trying to use known con-
clusions to test relationships such as those suggested.

The last category of studies mentioned in the Sawada-Cathcart model
are the assessment studies. There have been a large number of studies
done over the last 50 years which have tested the child's rational number
knowledge of achievement. Ye..., many of these have contained mainly
analyses of children's computation with fractions. Studies need to be
done with large samples of children using tests based on a more complex
view of the concept of rationals. One such study might look at the
attainment of above average 14-year-olds who have undergone what is
considered to be excellent instruction. This study might give an upper-
bound estimate of the effects of current instruction on rationals,
Another study might assess the rational number knowledge of large-samples
of pre-adolescents at several age levels. A third study might look at
low achieving high school students and assess their rational number
knowledge.

Because of their important effect, a study of teachers' concepts
of rational numbers, based on a complex view of this concept would be
enlightening. While this could most easily be done with preservice
teachers for both elementary and secondary schools, a study involving
a broad range of inservice teachers would be most interesting.

Summary

Several kinds of research on rational number learning have been
suggested. The analytic curriculum research represented by the companion
papers to this paper need continuation, with the conglomerate model
and pilot work cited as stimuli. Under this rubric, both pilot studies
and longitudinal effect studies are suggested.
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In developing the studies suggested above and in developing curri-
cula based on them, knowledge of effects of rational number behaviors of
children is needed. Clinical studies of such behavior are suggested.
In addition, experimental studies on the learning of such behaviors are
needed. To adequately tie such behaviors to a curriculum, they need to
be related to various psychological processes and to specific facets of
rational number learning.

If such studies are to really bear fruit, there must be cooperation
and coordination among them. It should be reasonable that the rational
number behavior studies, the instructional studies, the representation
studies, and assessment studies could share common tests, items, or
methodologies. As information becomes available from one study, it
should inform and indeed change other further studies. With such inter-
action, an adequate answer to the three questions posed initially can be
found.
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Review of Research on Fractions

Joseph N. Payne

University of Michigan

Overview

This report of research on fractions is organized chronologically
by studies done at Michigan since 1968. Other research is included
as background for these studies. This organization is intended to convey
the shift in direction of research and in questions asked over an eight
year period of work in this one content area. To show this shift in
direction, more detail is given to the Michigan studies. However, the
studies reported in less detail are by no means less important. Space
limitations preclude full discussion of all studies.

The Michigan studies done from 1968 to 1973 examined various approaches
to fraction algorithms and various manipulative materials. The first
study was done in 1968 by Bidwell on division of fractions, comparing
three approaches to the operations. Green (1969) compared two approaches
to multiplication of fractions as well as the use of diagrams vs..manip,A-
lative materials. Bohan (1970) compared two different sequences involv-
ing equivalent fractions and two types of materials. Coburn (1973)
studied two approaches to equivalent fractions: one using ratio and one
using regions. While each of these studies examined learning sequences
and identified weaknesses and strengths in children's cognitive structures,
emphasis was placed on comparing different algorithms for a given fraction
operation.

Beginning in 1973, !Tphasis shifted from comparing various algorithms
to a more intensive exe,:Ard.tion of what children learn while being taught
a carefully developed seqt,ence. The investigators were influenced by
Bloom's interesting work on mastezy learning and by Greeno's exciting
research on problem solving using information processing models. Much
pilot work viz.:3 done, trying to develop sequences with mastery learning
as a goal. At the same time, serious effort was devoted to carefully
assessing the way the learner's cognitive structures were developing.

Muangnapoe (1975) focused on the learning of initial fraction con-
cept and symbols. Williams (1975) examined the learning of initial
fraction concepts in a Detroit inner-city school. Galloway (1975) taught
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Muangnapoe's initial fraction sequence to children's in grades one through
five and examined the developmental patterns from grade to grade; she also
taught beginning decimal concepts to children in grades three through
five. Choate (1975) examined the cognitive structures of children who
were taught a rule for comparing fractions vs. children who were taught
a conceptual approach to comparison. Ellerbruch (1975) studied the
effects of changing the order of rules and concrete models for equivalent
fractions, and for addition and subtraction.

Thus, the Michigan studies have shifted in emphasis. They began by
comparing different algorithms, with an analysis of the strengths and
weaknesses of each. Recently, they have been more developmental. More
pilot work is being done as instructional materials are developed. Cur-
rently, however, more attention is being given to the cognitive structures
resulting from different combinations of rules and concrete models.

A Note About Language for Fractions

There is great variety in the language used in connection with frac-
tions. For example, in the Michigan studies, "fractional number" and
"fraction" are used almost interchangeably. When particular emphasis is
needed for the symbol, the words "fraction symbol" have been used. Most
arguments about language seem to rest eventually on the personal prefer-
ence of the person advancing the argument. And, it is highly likely that
having stated a personal preference in a general way, a contradiction
emerges shortly thereafter in specific ways. For example, after saying
that "fraction" is a symbol, the person is likely to use "fraction" to
mean either the number or the ordered pair of whole numbers for the frac-
tion. The question "What fraction of the pie is left?", "How do you add
fractions?", "What fractional part of the inheritance is mine?" all reflect
the idea of number than that of a symbol. In this report, usage of
terms should make their meaning clear.

Division of Fractional Numbers (Bidwell, 1968)

In the mid-1960's, much emphasis was placed on a. correct mathematical
development of topics in school mathematics, including those topics taught
in the elementary school. Division of fractional numbers, often considered
the most mechanical and least understood topic in elementary school, was
subject to a major new approach. This approach, labeled Inverse Operation
by Bidwell, was compared with two other algorithms called Complex
Fraction and Common Denominator.

The steps in each algorithm are as follows:

Common Denominator (CD)

a/b c/d = ad/bd bc/bd =ad be = ad/bc

153



147

Complex Fraction (CF)

a/b a/b x d/c a/b x d/ca/b c/d = - = a/b x d/c = ad/bcc/d c/d x d/c 1

Inverse Operation (TO)

a/b 4 c/d =C] ==> C)x c/d = a/b (C] x c/d) x d/c =

a/b x d/c ==> C)x (c/d x d/c) = a/b x C)x 1=

a/b x d/c C)= a/b x d/c C]= ad/bc

Bidwell used 21 intact sixth grade classes (n = 448) in Saginaw,
Michigan. There were eight lessons for each sequence, a review session,
and a final testing. Daily criterion quizzes were given. Bidwell com-
pared achievement on concept attainment related to the algorithm, division
of fractions, division with mixed forms, and applications and multiplica-
tion of fractions. Retention was measured three weeks after the posttest.
He also did a Gagne-type analysis of the learning structures for each
algorithm.

Two analyses of covariance were run: one using arithmetic achieve-
ment as a covariate and the other using IQ as a covariate. Adjusted
means are reported in Table 1, using arithmetic achievement as the covar-
iate. The results were very similar using IQ as the covariate.

Table 1 shows that there was consistent superiority of the InVerse
Operation treatment, although much of the advantage was lost on the reten-
tion test. The Complex Fraction treatment held a decided edge in retention
rate. The Common Denominator treatment was consistently inferior to
either of the other treatments, even for low ability students.

Lower achievement in the Common Denominator treatment was probably
caused by the_poor internal cognitive structure which the children
developed. On the Gagne-type analysis of the internal structure of each
algorithm, Common Denominator was clearly inferior with the two other
treatments comparable.

Correlations were run between skill in division of fractions and
scores obtained by testing the various parts of steps of a given algorithm.
As Gagne had suggested in his work, correlations were positive but rela-
tively low: Common Denominator, r = .60; Complex Fraction, r = .45; and
Inverse Operation, r = .51.

Poorly learned content. There were some major content areas not
learned well by pupils. Finding common denominators was difficult for
the CD group. Equivalent fractions were troublesome for CD and CF. In-
terpreting a fraction as an indicated division was hard for the CF pupils.
Relating multiplication and division sentences was a difficult task for
pupils in IO.

15.
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Related research. In past research where meaningful approaches to
operations on fractions have been compared to mechanical or rule approaches,
there appears to have been some advantage for the ones that were meaningful
(Alkire, 1949; Brooke, 1954; Capps, 1960; Howard, 1947; Krich, 1964).
Furthermore, when there was an advantage favoring meaningful approaches,
it was usually most evident on retention'tests.

Studies by Capps (1960) and Sluser (1962) dealt specifically with
division of fractions. In the Capps study, the "common denominator"
method was compared 4ith a "rote inversion method." Division skills were
comparable for both groups, but the inversion group did better on multi-
plication skills. The common denOminator method seemed to produce some
confusion on multiplication of fractions. Sluser used two different sequences
for dividing fractions. The first sequence used a common denominator
approach followed by the complex fraction method. The first sequence used
a textbook, but the second used lessons designed by Sluser. The advantage
at the end of instruction was for the pupils in the first sequence, but
this was lost by the time retention tests were given. Bidwell conjectured
that one of the difficulties with the second sequence resulted from inter-
ference between the two rationalized methods.

Comments. There were problems with many of the studies on operations
with fractions that Bidwell tried to remedy in his own study. In the
other studies, "meaningful" acid "mechanical" were not defined clearly.
Furtherthore, other studies and methods books that were examined often
confused the development of an algorithm with the statement of the rule.
For example, "inversion" was Often cited as a method as if had been
developed in a meaningful sequence of steps when it was nothing more than
a rule children were taught.

Bidwell developed three algorithms, all meaningful, and he specified
carefully what was involved with each. Each step in the algorithms was
developed with care, and the final rule was designed .to grow from the
development and not be something separate.

From Bidwell's study, it was learned that it is important to do an
analysis of the various components of the learning structure for an
algorithm. Poor performance on some major subskills needed in the de-
velopment of an algorithm showed spots where more effective instructional
materials were needed.

The biggest surprise in Bidwell'', study was the poor performance of
low ability pupils using the Common Denominator method. Methods books
for many years have recommended the common denominator approach as easiest
for slow learners. However, Bidwell's analysis revealed that the Common
Denominator method lacks internal, structure compared with the Complex
Fraction or Inverse Operation methods. That is, the Common Denominator
method did not hang together logically as well as the other two methods.
Bidwell demonstrated that an algorithm with good internal structure is
just as important for slow learners as for their brighter classmates.
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While Bidwell did not examine mastery learning per se, the mean
score on the posttest was less than 80%; the score on the retention test

was only about 50%. None of the mean scores on any of the algorithms
- even approached mastery learning levels for the simple skill of dividing

fractions. Consequently, it would be interesting to know how much
Bidwell's nine-day instructional sequence would have to be expanded and
extended to produce mastery learning and how this would affect retention.

For the Complex Fraction and Inverse Operations sequences, there was
reliance mainly on a logical development with a logical rationalization
of each major step. There was minimal use of diagrams or concrete objects.
In the Common Denominator sequence, analogies were made with concrete
measurement situations and diagrams were used. Bidwell did not, however,
investigate the relative effectiveness of concrete materials. This was

done in a study on multiplication the following year.

Multiplication of Fractional Numbers (Green, 1969)

Green's background as an elementary school teacher and supervisor
led her to consider algorithms for multiplication which had a logical
development but which relied heavily on physical representations. She

used a two by two design to investigate the effects of concrete materials
vs. diagrams and an area model vs. a fractional part model,.

Area. In the area models, a rectangular region was used to develop
an algorithm for multiplication which extended an idea developed for multi-

plication with whole numbers. For example, 2/3 x 3/4 = n is illustrated
by the shaded area in Figure 1. Since Area = length x width, the area
is 2/3 x 3/4.

I

V rjer,
A/ AZ

rA. ArA

Figure 1

2 3
Area = -3-x Tt

2 x 3
3 x 4

6

12

Finding fractional parts of (Of). The fractional parts model has

been the traditional model used. Multiplication is developed using the
first factor as a multiplier to find a fractional part of a region. To
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illustrate 2/3 x 3/4 = n using this approach, one begins, with 3/4 of a
region (see Figure 2a). Then the number 2/3 is used as an operator and
two-thirds of the shaded region is found (see Figtire 2b).

r
A

Figure 2a Figure 2b

2 3
of T.

2 3

3 x 4

Concrete. One inch paper squares were used as manipulative material.

Diagrams. Pictures were drawn for the algorithm but the squares
themselves were not manipulated.

Green used 20 intact fifth'grade classes (n = 481) in Waterford,
Michigan with four teachers per treatment. There were 11 lessons and a
posttest. A retention test was then given three weeks later.

Table 2 contains some data from her study. The mean scores were
adjusted, using arithmetic achievement as a covariate.

Green (1968, pp. 186-188) summarized her results as follows:

1. The Area approach was better for learning multiplication of
fractional numbers than the Of approach.

2. Diagrams and manipulative materials were equally effective in
learning multiplication of fractional numbers.

3. The treatments were ranked in order of superiority in learning
multiplication of fractional numbers as Area-Diagram, Of-Materials,
Area-Materials, and Of-Diagram.

4. None of the treatments was best for the high achievement groups
to learn multiplication of fractional numbers, and the Area-Diagram
treatment was best for middle and low achievement groups.

5. The Of-Materials treatment was the least effective for low
achievement groups to learn multiplication of fractional numbers.

6. With the exception ,of the Area-Diagram girls, there were no
differences between the boys and girls in learning multiplication of
fractional numbers.
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Table 2

ANCOVA
Post- and Retention Tests on Multiplication of Fractional

Numbers: Arithmetic Achievement as a Covariate (Green 1969)

Test Posttest Retention Test

Modela Area Of Area I Of

Concepts related to
algorithm (fifteen
possible) 10.8(3.2)**a 9.5(3.1) 9.3(3.3)** 8.5(3.4)

Computation
(twelve possible) 9.5(2.4)* 9.0(2.6) 8.2(2.4) 8.0(2.9)

Application
(twelve possible) 7.8(2.2) 7.5(2.2) 7.4(1.6) 7.5(1.7)

Posttest total
(thirty-nine
possible) 28.1(6.2)** 26.0(6.6) 24.9(6.0) 24.0(6.7)

Transfer
(fourteen possible) 2.6(3.2) 2.9(3.6) -- --

Diagram I Concrete Diagram I Concrete

Concepts related to
algorithm (fifteen
possible) 11.2(2.8)** 9.1(3.3) 9.5(3.2) 8.4(3.5)

Computation
(twelve possible) 9.1(2.5) 9.4(2.4) 8.0(2.5) 8.2(2.7)

Application
(twelve possible) 7.6(2.2) 7.7(2.2) 7.4(1.7) 7.5(1.7)

Posttest total
(thirty-nine
possible) 27.9(6.3)** 26.2(6.6) 24.8(6.2) 24.1(6.5)

Transfer
(fourteen possible) 2.6(3.1) 2.9(3.7) --

a
Standard deviation in parentheses
*p < .05
**p < .01
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7. The Of group had more favorable attitudes toward multiplication
of fractional numbers than the Area group.

8. The Diagram group had more favorable attitudes toward multipli-
cation of fractional numbers, and their instructional aids than the
Materials group.

9. The Of-Diagram group had the highest attitudes of the treatment
groups, and the Area-Materials group had the lowest attitudes.

10. Both the Area-Diagram groups and Of-Diagram groups liked using
diagrams significantly better than the Area-Materials and Of-Materials
groups liked using manipulative materials.

11. An analysis of the learning structure is valuable in determining
weaknesses and planning a correction of these weaknesses.

12. All groups had difficulty in finding a fractional part of a set.

13. The Area-Diagram and Area-Materials groups had difficulty with
the Area models for multiplying a fractional number by a whole number
and for multiplying a whole number by a fractional nuMber.

14. The Of-Diagram and Of-Materials groups had difficulty with the
Of models for multiplying a fractional number by a whole number and for
multiplying a whole number by a fractional number.

15. All four groups had difficulty with renaming a number expressed
in mixed form as a fraction.

16. All four groups were able to multiply a fractional number by a
fractional number.

17. The multiplication of fractional numbers expressed in mixed
form was difficult for all groups.

Green noted further:

The failure in finding a fractional part of a set
definitely points to the need to find a more effective
way to teach this important concept. Particular attention
should be given to overcoming the difficulty children have
with the "unit" idea, relating the model and the procedure
for finding a fractional part of a set, and delaying the
rule until there is understanding of the concept.

The difficulty with renaming numbers expressed in
mixed form as fractions indicates a need to investigate an
improved way to teach this. In addition to using models
to develop understanding of this important concept, the
study should investigate a way to relate the model with
the procedure. Pupils should understand why the procedure
works before using it. (p. 188)
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The Gagne-type analysis of the learning structures showed a higher
percentage of negative transfers within the structure for the groups

using manipulative materials. Green conjectured that this was caused

by difficulty in transferring from concrete objects to diagrams.

Related research. Most studies on multiplication of fractions are

similar to those on division. They involve assessment of various meaning-
ful or drill approaches, analysis of errors pupils make on multiplication,
and, more recently, effects of programmed materials and various reinforcement

schedules.

The study closest to Green's was done by Howard (1947). He used

three "methods" for teaching a wide variety of fraction topics in grades
five and six, including multiplication in grade six. He called his

methods Drill, Meaning, and Combination. By Drill he seemed to mean giving

children rules to follow and practice in computation--with no developmental
work or concrete models. By Meaning he meant the use of concrete models

and visual aids. The Combination approach was described as including

both Meaning and Drill. Howard found that none of the three methods was
superior at the end of instruction, either at the end of grade five or

grade six. He did find, however, that at the beginning of the next school
year pupils in the Meaning and Combination groups far surpassed the Drill

group. Thus, on long term memory, the Drill approach was demonstrated to

be inferior.

Several studies involved preparation of different instructional
materials and various feedback or reinforcement schedules. For example,

Miller (1961) and Triplett (1962) investigated multiplication. Miller
designed materials with prompt feedback for pupils and found them superior

to the "regular text" on a posttest. No retention test was involved in

Miller's study. Triplett designed special materials for high, middle,
and low ability pupils in grade six, attempting to adapt to individual
differences among the three groups. He compared achievement on his

materials with achievement using the "regular text." Triplett found his

materials superior for the middle and low groups and concluded that dif-
ferentiated written materials should be provided.

Arvin (1965) found no differences in achievement between children
using programmed materials compared to those in "regular classroom" instruc-

tion. However, the programmed materials took only half the time. Fur-

thermore, using programmed materials, Austin (1965) found no differences
between treatments comparing multiple-choice answers vs. written answers

and 100% reinforcement vs. 50% reinforcement.

Morton (1924) and Brueckner (1928) analyzed errors pupils make on

all operations with fractions. Fewer errors were found on multiplication

than on the other operations. Other major sources of errors were:
(a) performing the wrong operation, (b) failing to reduce to lowest
terms,and (c) making mistakes in computation.
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Comment. As in the study by Bidwell, Green was more specific in
designing and describing her sequences. She avoided the language of
"Drill Approach" or "Meaningful Approach" evident in the literature and
in other studies. All her approaches would have been considered mean-
ingful, although they are nearer to Howard's "Combination" than to his
"Meaningful." Green mixed meaningful work with practice more than
Howard probably did.

It is important to note that a "Drill Only" or a "Rule Only" approach,
an approach lacking either a mathematically logical development or con-,
crete representation, was never used in any of the Michigan studies. (In
later studies, Choate and Ellerbruch have investigated different ways to
teach the rules for computation. Results from Choate's work are reported
later in this document.)

All of Green's approaches involved Some visual model: either concrete
materials that children manipulated or diagrams of regions. Looking at
her data, the most striking result is that her retention scores for any
of the four treatments were almost 90% of the posttest score. Her reten-
tion rates were much better than the ones obtained by Bidwell (61% to 767..).
Thus, it appears, in retrospect, that the use of visual materials in
developing algorithms has a more important effect on retention than does
a purely logical mathematical development such as the ones used by Bidwell.

While none of Green's approaches had a significant advantage on the
retention test, it is striking that the cognitive structures for pupils
in the Area approach were superior to those in the approach Finding Frac-
tional Parts. Since there are more applications and practical uses for
finding fractional parts, what may be needed is an investigation of how
this approach can be taught so that the cognitive structure has a better
fit than it seemed to have in Green's study. Furthermore, a careful
analysis is needed of the differences that emerge when one approach is
used to develop an algorithm and then another is used to teach application
of the algorithm. For example, in using an initial approach of finding
fractional parts, what happens to the structure when children are then
taught to use the algorithm in area situations?

Green found particular trouble in finding fractional parts of sets
(e.g., 2/3 of 12). This topic was not identified as difficult in prior
studies such as the ones by Morton (1924) or Brueckner (1928). However,
in later Michigan studies (e.g., Muangnapoe, 1975), the set model for
fractions was found to be difficult for children. Consequently, it is
possible that the approaches to fractions and the operations on fractions
that were used in the instructional materials of the 1960's may have
created problems in finding fractional parts. There is a need to inves-
tigate whether finding fractional parts should be related more to whole
number work on division than to fractions per se.

It was striking that the use of manipulative materials did not have
the advantage either in achievement or attitudes often claimed by methods
texts and curriculum designers. Evidently, it is much more complicated
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to relate a child's thought to his use of concrete materials and/or
diagrams of the materials than is usually assumed. Later work by Payne,
Greeno, Choate, Muangnapoe, Williams, and Ellerbruch (1974) and Muangnapoe
(1975) attested to the need for carefully relating concrete objects to
diagrams in teaching initial fractions concepts.

Green found much trouble with equivalent fractions, particularly
with reducing to lowest terms, and Bidwell found similar difficulties
with equivalent fractions. Consequently, because equivalent fractions
is a topic needed for all operations, the next Michigan study was on
equivalent fractions. Thus, a topic that had proved to be difficult to
learn provided the direction and impetus for the subsequent study.

Three Sequences for Equivalent Fractions (Bohan, 1970)

Bohan designed three different instructional sequences for equiva-
lent fractions. One used diagrams to develop equivalent fractions, one
used a paper-folding technique, and a third introduced multiplication
first and then the property of one. Bohan taught each sequence himself
in two intact fifth grade classes (n = 171) in Huntsville, Texas. Each
of the sequences was taught for six weeks. Details of the sequences
are as follows:

Equivalent fractions (using diagrams), addition, and the multipli-
cation (EAM). Diagrams of regions and number lines were the dominant
models used to show that two fractions are equivalent. The key initial
idea was essentially a measure idea; two fractions are equivalent if
they show the same amount or the same measure. Then a "pattern" of
multiplying numerator and denominator by a natural number was shown to
yield the same results as those derived from diagrams. The generalization
was arrived at inductively by looking at examples and observing patterns.

After three lessons on the meaning and language of fractions and
six lessons on equivalent fractions, Bohan taught seven lessons and addi-
tion and subtraction of like and unlike fractions. Instruction was
included on finding least common denominators, on building sets of equi-
balent fractions, and on using a factoring method. Then eight lessons
were taught on multiplication.

Equivalent fractions (paper-folding), addition, and then multipli-
cation (EPAM). This sequence was the same as EAM with only one exception.
Paper-folding was used as a way to make a "logical" connection between
diagrams that show equivalent fractions and the generalization of multi-
plying and dividing numerator and denominator by the same number.
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Multiplication, equivalent fractions, and then addition (MEA).
After three lessons on the meaning and language of fractions, Bohan
taught six lessons on multiplication, eight 1^qsono on equivalent
fractions including one with stress on multiplication, and then seven
lessons on addition and subtraction.

The order of topics was different in this sequence, but the major
difference was the use of the property of one to develop the generaliza-
tion for getting equivalent fractions.

Tests were administered on equivalent fractions, addition and sub-
traction, and multiplication at the end of instruction on the given topic.
The retention test was given three weeks after the teaching ended. Arith-
metic achievement was used as a covariate in adjusting means (see Table 3).
Retention tests were not parallel forms of the posttest.

Bohan did an analysis of the various components of the three sequences
that was similar to Bidwell's and Green's. The percentages of students
attaining the sub-objectives in the sequences are shown in Tables
4-6.

There are many observations that can be
them, the following seem to be of particular

1. EPAM is higher than EAM on C-3, the
numerator and denominator by the same number

made from Tables 3-6. Among
note:

generalization of multiplying
to get higher terms.

2. Results are low on getting equivalent fractions to lower'terms
in all three sequences with only about one-half the pupils achieving
criterion. Bohan conjectured that part of the difficulty may be lack
of recall of division facts or the relationship between multiplication
and division. Also, he recommended the development of a better model
for getting lower terms.

3. Equivalent fractions scores on the posttest or MEA are relatively
low. Bohan thought that the "property of one" approach did not promote
understanding of equivalent fractions, but was a valuable mechanical
aid.

4. There is a large drop for retention on multiplying a whole number
and a fraction for all sequences.

5. Bohan noted that finding common denominators and using lists of
sets of equivalent fractions were not sufficient to be able to add unlike
fractions. He suggested a possible weakness in the addition sequences
was the use of lists of equivalent fractions. He thought that the lists
promoted an "addition" idea rather than a "multiplication" or "division"
idea for generating equivalent fractions.
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Bohan recommended the EPAM sequence (a) because of its demonstrated
superiority, particularly in comparison with MEA, on equivalent fractions
and (b) because of superiority in attitude measures over EAM and MEA. No
method was superior for getting equivalent fractions to lower terms. The
comparable achievement on multiplication shows that the time of intro-
duction, is not crucial. For higher achievement, Bohan suggested trying
a sequence such as EPAM, but doing more during the multiplication sequence
using the property of one to develop equivalent fractions. Of particular
note is his observation that paper-folding helped make a logical connec-
tion between the concrete model and the generalization for getting higher
terms.

Related research. 'While Bohan seemed to have devised a relatively
effective sequence for getting higher terms, he was not successful with
reducing (i.e., getting fractions to lower terms). Other researchers
had also found trouble with equivalent fractions. Some did not always
specify whether the problem was higher or lower terms. However, reducing
has been identified as an area of greatest difficulty by most researchers.

In the Michigan studies, Bidwell and Green found both higher and
lower terms difficult. Morton (1924) identified failure to reduce to be
a major source of errors with fractions. Hinkleman (1956) found that
the principle of multiplying/dividing the numerator and denominator by
the same number was among the principles least frequently understood by
fifth and sixth graders. Becker (1940) found that about one third of
the errors made by sixth grade students in addition of fractional numbers
were attributable to equivalent fractions. Anderson (1969), while
analyzing errors made by 599 fifth grade pupils on addition and subtrac-
tion of fractions, found that the two categories with highest percentages
of errors related to equivalent fractions. The most frequent error
Anderson found was renaming fractions in lowest terms and next was deter-
mining the numerator after the denominator of an equivalent fraction had
been determined.

Of particular relevance to Bohan's study was the finding by Anderson
that two methods were equally effective for finding equivalent fractions:
(a) setting up rows of equivalent fractions or (b) factoring to find the
lowest common denominator. Bat-hee (1969), however, found that the
factoring method was superior to a "textbook" approach that used an
inspection method involving equivalent fractions.

Steffe and Parr (1968) found little correlation between the ability
of fourth, fifth and sixth grade students to solve equations such as
6/15 = n/5 and their ability to handle proportional situations based on
verbal or pictorial data. They suggested that this result indicated a
lack of understanding of equivalent fractions.
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Comment. The most significant conclusion in Boahn's study was
the demonstrated superiority of the paper-folding technique for generating
equivalent fractions in higher terms. It seems fair to conjecture that
the folding itself provided a logical connection between observing two
regions with the same measure and the generalization of multiplying
numerator and denominator by the same number. Least effective was the
sequence where pupils merely observed a pattern and inductively made the
generalization.

Bidwell found similar trouble with his common denominator sequence;
the sequence that was least logical of his three. Green, in retrospect,
found greatest trouble with the Finding Fractional Parts approach. Con-
sequently, it could be that the logical bridge is weak from finding
fractional parts to the generalization of multiplying numerator and de-
nominator by the same number.

Taking all three studies together, Bidwell, Green and Bohan, it
appears algorithms seemed to be learned best when they were logical,
and retention seemed to be best when there was a heavy visual component
to instruction.

Of secondary importance from Bohan's study, but certainly worth
noting, was the demonstration that instruction on operations on fractions
can begin, with multiplication. All textbooks and most methods books have
suggested ant addition and subtraction come first. Those few methods
books that have suggested that multiplication come first have done so
because multiplication could then be used with the property of one to
generate equivalent fractions, however, this has not been researched.
While using the property of one seemed not as effective as the paper-
folding for generating equivalent fractions, in all other respects,
introducing multiplication first produced results just as good.

On retention, the percentages of pupils in the three sequences that
met criterion on reducing fractions was 33, 47 and 25--percentages clearly
below any mastery level. The corresponding percentages for getting
fractions to higher terms were 73, 73, and 75. The results on higher
terms are very close to what one might consider mastery learning. Thus,
mastery of equivalent fractions in higher terms by fifth grade pupils
seems feasible, but lower terms is not feasible using any of Bohan's
sequences. Clearly, a better instructional sequence is needed for
teaching reduction of fractions.

Ratio and Region Model for Equivalent Fractions (Coburn, 1973)

Sparked by performance results and by his own interest in ratio as
a topic, Coburn compared a ratio model and a region model for generating
equivalent fractions with fourth grade children. He also examined the
effect of the two models on addition and subtraction of 'factions.
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In ten intact fourth grade classes (n = 254), five teachers taught
one sequence and five taught the other sequence. The study was
done in Pontiac, Michigan. Posttest measures included the various com-
ponents of equivalent fractions as well as addition and subtraction of
fractions. A retention test was given two and one-half weeks after the
posttest.

RATIO. Four Weeks: Generalization for Higher and Lower Terms

Ratios of disjoint sets were used to develop generalizations for
multiplying/dividing numerator and denominator by the same number. Equiv-
alent fractions were defined as two fractions that show the same ratio.
The fraction symbol was associated with ratio. The ratios were part-to-
part comparisons.

One week: Equivalent fractions using region model. The fraction
symbol was associated with shaded portions of a region, thus, using a
part-to-whole comparison for fractions. Equivalent fractions were viewed
as two fractions that named the same number. Bohan's paper-folding
technique was used to generate equivalent fractions, using the region
model. This is essentially a measure idea deemed necessary for the
subsequent work with addition and subtraction.

One week: Addition and subtraction of fractions. The major concrete
model used related addition and subtraction to the measurement ideas
deVeloped in the prior week.

REGION, Four Weeks: Generalization for Higher and Lower Terms

Equivalent fractions were developed using the region model described
above.

One week: Addition and subtraction of fractions. "tis was the same
as the treatment under RATIO.

One week: Use of ratio with equivalent fractions. The content
during this week was the same as for the first six days in the RATIO
treatment. Initially, there was a slight modification to make the transi-
tion from the part-to-whole comparison required in the region model to
the part-to-part comparison for the ratio model.
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Among Coburn's conclusions were the following:

1. RATIO and REGION were equally effective with the renaming
generalization. The mean percentage correct for both higher and lower
terms for both treatments was just slightly better then 50. He questioned
equivalent fractions as a fourth grade topic.

2. Using ratio diagrams, REGION was significantly better than RATIO
when a part-to-part or a part-to-whole comparison was required. RATIO
students tended to select a part-to-whole response when a part-to-part
comparison was required.

3. The.region diagrams were more difficult for children to inter-
pret than the ratio diagrams.

4. REGION was superior to RATIO on addition and subtraction with
unlike fractions. With like fractions, achievement in the'two treatments
was comparable.

Percentages correct on addition and subtraction of unlike fractions
were low: 327.. for RATIO and 477.. for REGION.

5. Achievement was higher for REGION on solving problems involving
proportions, especially ratio word problems.

6. REGION was higher on retention items such as a/b = ?/nb.

7. REGION had higher attitudes.

8. Neither group of pupils.seemed to utilize the generalization
developed initially in the four-week unit when developing their second
interpretation. In the second encounter, pupils tended to rely on
perceptual clues or counting rather than the generalization.

9. The correlation between adding using an equivalent fractions
chart and addition shown in symbol form was .758 for REGION, higher than
correlations between addition and renaming generalizations or addition
of like fractions.

Coburn recommended beginning with the region model because it pro-
vides a smoother connection with addition and subtraction of unlike
fractions, better maintenance of a/b = ?/nb, and a smoother transition
to a part-to-part ratio comparison.

Coburn recommended a delay in verbalizing the rule for equivalent
fractions until the need arose in addition with unlike fractions. He
suggested the continual use of concrete models through addition of unlike
fractions. He pointed out a need for substantially greater attention to
equivalent fractions in instructional materials.
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Coburn also pointed to a need for further work in specifying the
components underlying fractional numbers themselves-74orms of represen-
tation, relating symbols, verbal expressions, and the various translations.

Related Research. Coburn's results on equivalent fractions in grade
four were comparable to those obtained in the National Longitudinal Study
of Mathematical Abilities (NLSMA) done by the School Mathematics Study
Group (Wilson, Cahen, & Begle, 1968) at the end of grade five, end of
grade six, and beginning of grade seven. In the NLSMA study, the mean
correct was 56% at the end of grade five on equivalent fraction items
when one denominator was a multiple of the other (Wilson, et al., p. 27).
At the end of grade six, on items such as 1/3 = 16/?, the mean correct
was 51% (Wilson et al., p. 39). At the beginning of grade seven, items
requiring interpretation of region diagrams for equivalent fractions
showed mean correct of 44% (Wilson et al., p. 58). The NLSMA involved
a very large sample of students, giving even more Creditability to the
poor achievement on equivalent fractions.

Steffe and Parr (1968) did a survey of fourth, fifth and sixth grade .

pupils to determine their ability to solve specific problems involving
equivalant fractions. All items involved solving for the missing number
in a proportion statement in which the corresponding terms were multiples
of whole numbers. Some of the items were symbolic and some were pictorial.
Of the pictorial items, half involved a ratio interpretation and half
involved a region interpretation. Ratio items involved comparison of
disjoint sets, while fraction items showed shaded parts of region diagrams.
Fteffe and Parr found that ratio diagrams were significantly easier to
interpret than region, interpretations, and they conjectured that the ratio
interpretation would be easier to teach children than the region (measure)
interpretation (Steffe & Parr, p. 23).

Coburn did not find the ratio interpretation easier. He conjectured
that the reasons for the differences observed by Steffe and Parr were
the more complex language used in testing with the region diagrams and
the greater complication in the drawings of regions to interpret equiv-
alent fractions (Coburn, p. 56).

Of particular interest in subsequent Michigan studies was the obser-
vation by Steffe and Parr:

Much more care must be taken in the fifth and sixth grades
to develop a sequence of lessons which are designed to
enhance children's ability to represent visual data mathe-
matically in the case of ratio or 'fractions, indeed if that
ability can be enhanced. (p. 26)
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Comments. The most significant finding in Coburn's study was that
pupils using the REGION approach initially did better on addition and
subtraction with unlike fractions. Thus, it seems evident that in choosing
an initial model to be given main emphasis, one must look ahead to subse-
quent work. Comparability in achievement at the end of the development
of the initial model, such as at the end of the initial development of
REGION and RATIO, does hot give one a free choice of either approach.
Given equal achievement using the two models, the extent of use in tasks
yet to come probably should determine the choice.

The biggest surprises in Coburn's work were: (a) the superior per-
formance of the REGION group when part-to-part or part-to-whole comparisons
were required and (b) the higher achievement of the REGION group on solv-
ing ratio word problems. Thus, it appears that ratio ideas are more
readily accomodated to region ideas than conversely. Retention seemed to
be better also for the REGION groups. These data and other evidence point
to a more consistent and sound cognitive structure being built using
REGION as the initial model.

In Coburn's sequence on addition and subtraction, he spent four days
doing the operations using paper strips and fraction-bar diagrams. Then
the generalization for equivalent fractions was used to do further work
with addition. There was a very high correlation between success in
adding/subtracting using the fraction-bar diagrams and success in adding/
subtracting in symbolic form using the equivalent fraction generalization
(r = .758 on posttest and r = .838 on retention test for REGION group).
The correlations were not nearly as high between adding/subtracting in
symbolic form with higher terms generalization (r Z.5), lower terms
generalization (rfd .4), and addition subtraction with like denominators
(r46.4). It seems likely that improvement on adding/subtracting with
unlike denominators in symbolic form might come by spending more time
initially with concrete materials, or else more time is needed to relate
the symbolic form to the concrete materials.

At the conclusion of Coburn's study, there is added evidence on the
difficulty with equivalent fractions, particularly in getting lowest terms.
If one is to expect mastery learning of this topic, then more time is
needed, and mastery probably should not be expected until the later grades.

At this point in the Michigan studies, there was strong evidence that
performance on fraction operation algorithm was less than at mastery
levels. Logical developments of algorithms seemed important. Concrete
objects that seemed to fit well with steps in the algorithms appeared
to help achievement, and this was more pronounced on retention tests.
There is a question recurring in all the studies and particularly in
the mind of this writer. The question is: What is the relationship
between the concrete models, including the basic developmental work,
and the rules for an algorithm by which an answer to a computational
exercise is generated?
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Initial Fraction Concepts, Symbols and Language (Galloway, 1975;

Muangnapoe, 1975; Payne, et al., 1974; Williams, 1975)

In the period from 1973 to 1975, a series of related studies was
conducted on learning initial fraction concepts and on algorithm

learning. With an initial goal of having more pupils master the content
being taught, more pilot work was done with small g oups before using
the instructional sequences with larger groups in more controlled

experimental situations.

The central question under investigation was stated at the end of

the previous section. All those invloved in the research project felt

that any algorithmic work on operations with fractions must rest on sound

knowledge of the initial fraction concepts. Furthermore, the investigators

thought they knew how to achieve mastery on the initial concepts. Such

was not the case, as was found in Pilot Study One.

Pilot study one. In the first pilot study, a team of seven investi-

gators (Payne, Choate, Ellerbluch, Greeno, Muangnapoe, Galloway and

Williams) designed an initial sequence on fractions, using as a guide the

treatment found in most textbooks. The content was taught by investigators

well prepared in mathematics and in mathematics education and experienced

in teaching mathematics.

The initial pilot study was done using an entire fourth grade class.

There was stress on the use of ordered pairs of natural numbers, written

a/b, to name parts of regions, parts of segments, and parts of sets.

While some paper-folding was done the first day, the major physical repre-

sentation was done with diagrams. Included were mixed forms, fractions
greater than one, comparing fractions and writing equivalent fractions

using diagrams.

This pilot work showed that too much content had been presented with

mastery achieved on almost none of it. Difficulties were observed with:

(a) recognizing the need for equal size parts, (b) recognizing when parts

were the same size in diagrams, (c) ignoring the fixed unit for fractions

greater than one, (d) anything related to number lines, (e) reversing

numerator and denominator, and (f) using the fraction symbol to express

quantitative ideas.

Pilot study twor. Because of the difficulty in assessing specific

learning strengths and weaknesses in the whole classroom setting, the

second pilot study used only five children, including one of high and

one of low ability. One experimenter taught while the others observed.

Revisions were made on a day-to-day basis, depending upon the outcomes

of discussions. The discussions were time consuming because it was

often difficult to get agreement on what the children were thinking.
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In the seond pilot study, fractions were first introduced as a
part of a unit (e.g., a sheet of paper or a region diagram) and later as
part of a set. Number pairs were stressed, and language such as "2 of 4"
or "2 out of 4" was used. Fractions greater than one and mixed forms
came later. Much more time was given to the number line.

Much improvement was noted, but still there was not mastery of our
objectives. Achievement was low on number lines, fractions greater than
one, and equivalent fractions. There was much discussion about the
trouble with using sets of objects as a model. An attempt was made to
assess the pros and cons of including this model in the instructional
sequence.

Pilot study three. While achievement was nearing mastery, more
specific information was needed. It was decided to teach one pupil at
a time. Muangnapoe, Choate, Ellerbruch, and Payne taught two pupils,
one at a time for ter, lessons. The second pilot study led to major
changes in content taught in the third pilot study. Among the major
features were: (a) the measurement idea was the overall theme for frac-
tions, (b) concrete objects were used for a longer period of time before
diagrams were used (The experimenters started to realize the perceptual
difficulties children were having with diagrams.), (c) word names were
taught before fraction symbols to help with the "reversal problem" (see
Gunderson, 1957, for a description of the "reversal problem"), and
(d) the set model was kept, but hesitantly because of the prior trouble
it had introduced.

lsing the names first eliminated the reversal problem completely.
Difficulties persisted in identifying fractional parts of a set and with
number lines. And, it was agreed that the set model was too difficult
to include in the "final" sequence. The conjecture was that the set model
interfered with the measurement idea.

Initial fraction sequence used by Muangnapoe. Muangnapoe (1975)
studied the initial fraction sequence (IFS) very carefully, assessing
with care the learning of all facets of the initial fraction work. He
compared results obtained from four regular classroom teachers in grades
three and four with those from his own instruction of 15 pupils in groups
of three. A complete description of the sequence is in Payne et al. (1974)

The IFS spent four lessons using concrete objects. The first three
lessons used sheets of paper and paper straws as units. Paper and straws
were cut or folded and the oral fraction names "half, third, fourth, .

were taught as well as the written word names. The fourth lesson related
the fraction symbol to the concrete representations. There were two
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lessons relating the fraction symbols to the word names for fractions
and to diagrams of regions and number lines. Thus, there was a conscious
plan to move from concrete objects to diagrams, with the diagrams always
viewed as "pictUres" of the concrete objects. Two final lessons were on
mixed forms, including diagrams of regions and number lines. The final

lesson was a review lesson. The posttest was given the next day. Reten-

tion tests were given about three weeks later.

Some of the data from Muangnapoe's study are reported in Table 7.

Table 7

ANOVA
Initial Fraction Sequence Pretest, Posttest,

Transfer and Retention, and Data on
Pupils Achieving Mastery Learning (Muangnapoe, 1975)

Classroom Teacher (n = 91) Muangnapoe (n = 15)

Statistic Range Mean SD Range Mean SD

Pretest (thirty
possible) 5-23 14.1 3.1 10-19 15.1 3.3

Posttest total
(seven y possi-
ble) -. 34-70 60.2 9.0 41-70 63.3 8.1

Transfer
(thirteen
possible) 0-13 5.7 3.0 1-13 7.7** 3.1

Retention (sixty-
nine possible) 35-69 58.7 8.9 47-69 64.3* 6.2

Range Mean SD

Posttest (same
as pretest) 12-30 25.7 4.8

Number Percent Number Percent

Pupils with
posttest
scores > 80% 64 70 13 87

Pupils with
posttest
scores > 90% 55 60 13 87

*p < .05
**p < .01
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There were some interesting results on transfer for pupils who
achieved 90% or better on the posttest. For this group, the Mange on
the transfer test was 2-13 with mean 7.35 (57%) and SD 2.68. All pupils
who scored 8 or above on the transfer test came from this group. Thus,
high achievement seems to be a necessary but not sufficient condition
for transfer.

Items from NLSMA and from a standardized test were included on the
posttest. On content taught in IFS, IFS achievement was substantially
better.

Major difficulties persisted with: (a) identifying a unit from a
diagram when more than one unit was shown, (b) realizing the need for
equal-size parts of a unit (particularly' obvious with circular regions
using parallel cuts), (c) comparisons involving traction symbols,
(d) fractions greater than one, and (e) applying fractions to the number
line.

Comment. It took almost a full year to develop the initial fraction
sequence to produce the unusually good achievement results reported in
Muangnapoe's study. It is important to note, with these high results,
that the set model had been dropped from the sequence because it seemed
to interfere with the measurement ideas associated with regions and
because achievement was low on the set model. Difficulties persisted
with fractions associated with number lines, and errors on this topic
contributed substantially to the lower scores of many pupils.

Subsequent to the Muangnapoe study, Greeno interviewed six pupils
from the 90% or better achievement category: three who did very well on
transfer and three who did not do well on transfer. The goal was to
ascertain reasons for bett;.r. transfer. After the interview, the conjec-
ture was that those higher in transfer had sounder and more thorough
knowledge than the others. This was added evidence that mastery of the
initial fraction work is crucial. The major conclusion from Muangnapoe
was that pupils in grades three and four can be taught so that they learn
the subject well.

Initial fraction concepts in grades two and four and remediation
in grade six (Williams, 1975). Williams made some modifications and
used the sequence reported in Muangnapoe. Williams, herself, taught an
intact class of second grade pupils, an intact class of fourth grade
pupils, and ten remedial sixth grade pupils. In her action research
project, she reported with some detail the reactions of pupils, noting
with care the strengths and weaknesses in the pupils' learning. The
pupils were in an inner-city school in Detroit in which she was an
Assistant Principal.
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In grade two, she spent two weeks on instruction. Mean achievement
on fraction concepts, word names and symbols using'concrete materials was
about 70% (p. 25). When Williams helped children make the transition
from concrete objects to diagrams, she found difficulties emerging.
Children had considerable trouble when rectangular, linear, and
circular units were drawn on the same sheet. The number lines were
especially difficult, both in identification and in construction
of fractional parts.

At the end of instruction in the second grade, Williams (1975,
pp. 29-30) summarized the students' progress as follows:

1. Most pupils were able to identify equal-size parts
in non-circular units. However, some still considered

to be equally divided.

2. Improvement was noted in ability to locate and name
diagrams representing one unit or less, except in
relation to line segments.

3. Major difficulties persisting involved
(a) construction of equal-size parts'
(b) conception of more than one unit as a unique

quantity rather than as parts of a large
unit; e g.,

"III was labeled as 7/10 rather
than 7/5.

(c) performing the same operations on line segments
as on two-diMensional figures. One child con-
verted the line segment into a rectangle; then
proceeded to divide the rectangle to show the
fraction named.

She did not think that instruction was as succesful in grade four,
probably because of irregular attendance of the pupils. Williams (1975,
pp. 34-35) summarized the results as follows:

1. There was noticeable improvement in ability to
recognize and name parts of units, except line
segments.

2. Difficulty with fractions greater than one, and
the use of mixed forms persisted.
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3. Skill in accurately constructing representations
of fractions revealed little progress. Units were
hastily and unevenly divided, especially in diagrams.
Folding was fairly accurate if edges could be brought
.together first, as with halves, fourths, and eighths.
The narrow strips used as dividers were helpful in
constructing thirds, fifths, and ninths. The rela-
tionship among halves, fourths, ana eighths was
recalled and used more readily than that among
thirds, sixths, and ninths.

4. A.7.though the entire sequence was covered, it appears
to have been paced too rapidly for this fourth-grade
group, especially under the adverse conditions of
time and weather.

In grade six, Williams attempted to remediate ten especially low
achieving pupils. She had only moderate success. Among comments
Williams (1975) made were thee:

Posttest results indicated gains in ability to
draw diagrams of one or more units and a specific part
of congruent unit (other than line segments), when
given a word name or fraction symbol; e.g., four thirds,
4/3.

The experiment does suggest that remediation may
cause confusion for the child, in trying to sort out
old and new concepts and determine which are more
valid. It, also suggests that, given a series of
simple related tasks, some children are able to uti-
lize past experiences and gain new insight into
concepts previously misunderstood. (p. 42)

The students appeared to understand the concepts
quite well, especially in oral work; yet, worksheets
and tests did not confirm this. In fact, test scores
declined in some areas. (p. 47)

Williams suggested shorter written assignments, better geared to
the slow learners' attention span.

Williams taped comments from hex remedial students. Among the
observations possible, Williams (1975, p. 48) alerted the reader to
become aware of:

a. a child's difficulty in verbalizing ideas which he
apparently understands;

b. a teacher's search for appropriate vocabulary to
elicit from the child the rationale on which a
choice was made.;
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3. a difference in how the child and the teacher
perceive,the same figure(s);

4. a child's fear of failure, or negative self-image;

5. the constant need for reinforcement; and

6. problems which symbolism presents--getting the
words or numerals in exact order.

It seems clear from Williams' study that fractions related to concrete
materials can be taught quite successfully by grade two. However, much
remains to be done to develop successful remedial materials.

Initial fraction concepts, grades one through five, and decimals in
grades three through five. Galloway (1975) examined the cross-sectional.
results of teaching the IFS used by Muangnapoe and Williams to pupils
in grades one through five in a suburban school. Regular classroom
teachers taught the unit, all at the same time of the year. The unit
lasted 10 days., While the primary teachers, grades one through three,
did not progress as far in the sequence, they did follow the same develop-
ment. The primary teachers spent longer with concrete materials and
diagrams, mixed forms were not introduced, and little was done with
fractions greater than one. A three day decimal unit was taught to
pupils in grades three through five following the IFS. Galloway, principal
of the school in which the study was conducted, taught the decimal unit
to the third grade class.

Among the findings by Galloway were these:

1. Students at all ages were able to correctly identify a unit,
identify equal-size parts, and identify fractions less than one. At all

age levels the concepts of "units" and %qua:LH were easy to learn. All
levels could use oral fraction names, concrete models, and diagrams in
fraction identification.

1. All age levels had difficulty with number lines. Primary students
found writing and diagramming difficult.

3. Most students from the age of eight on can master the initial
fraction concepts and symbols in a two-week period.

4. When comparing fraction achievement at various age levels, grade
one students had a significantly lower achievement level than grades two or
three. Grades two and three had achievement patterns which were very
much alike in their posttests, but were significantly lower than grades
four and five. Achievement for grades four and five were very much
alike, with no differences at all on the retention test.
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5. Decimals for tenths can be introduced and mastered by students
in the third grade and above. All three levels achieved mastery in
reading and writing decimals for tenths. There were no significant
differences in achievement at the three levels. Pupils in grade three
did have slightly more trouble reading a centimeter ruler drawing to
tenths than did pupils in grades four and five.

Galloway sacommended more attention to fractions in the primary
grades, because of the good achievement and because of the high enthusiasm
of the pupils in the early grades. She also recommended a longer period
working with concrete materials, more time on teaching comparison of
fractions, and more time on developing and interpreting number lines.

Comment. Results from Galloway and Williams show decisively that
it is quite feasible to teach a substantial unit on fractions in the
second grade and that high achievement is possible. Both Galloway and
Williams recommend more work with concrete materials. Both recognized
trouble with the number line and recommended substantially more time for
the topic if it is included. Content expectations in grade one probably
should be curtailed substantially from that in the IFS.

The success with decimals in grade three is probably attributable
to the childrens' unusually sound knowledge of fractions. Their perfor-
mance was astonishingly high both on decimals for tenths and on the
centimeter ruler to tenths. They read and interpreted the centimeter
rulers to tenths with great ease.

Algorithmic and Conceptual Development for Comparison of Fractions
(Choate, 1975)

Choate's study reflects the initial concern of studying the way
algorithms are presented. The major variable that he investigated was
the time of presentation of the rule for comparing two fractions.

The general rule (R) used was (a) multiply each number of one
fraction by the bottom number of the other fraction, and (b) since the
fractions now have the same denominator, compare the fractions by com-
paring the numerators.

He used four treatments:

1. Rule Algorithm (RA)--Rule presented with no conerptual development.

2. Meaningful Algorithm (MA)--Each step of tne rple was developed
and illustrated with diagrams. The steps of 7.11,:: r41% r,ud the development

went side by side.
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3. ConceptualLate Algorithm (CLA)--Diagrams were used extensively
to compare fractions leading to a statement of the rule on the last day.

4. ConceptualNo Algorithm (CNA)--Same as CLA with deletion of the
statement of the rule.

Two intact classes used each sequence. They were mixed fourth and
fifth grade pupils, with the majority in the fourth grade. After
teaching initial fraction work for two weeks, six lessons on comparisons
were taught and a posttest given the seventh day. A retention test was
given ten days later.

Achievement was comparable for the four treatments. The MA treatment
tended to produce poorest results. Some subscores favored CNA, CLA and
RA, but none favored MA. On transfer to addition and subtraction, CLA
and CNA were significantly better than RA. Of some surprise was the
superiority of RA on a transfer item solving proportion in number
sentence form.

Comment. What seems clearest from Choate's work is that steps in a
rule developed side by side with visual diagrams is the least effective
way to teach an algorithm. While this result seems to contradict prevailing
practice, it does make sense that there may be difficulty in teaching
two seemingly different things at the same time.

The relatively good performance of the Rule Algorithm Group must be
viewed with some caution. The pupils did have the IFS first and were
well prepared on this initial fraction knowledge. Furthermore, some
diagrams were used in the first day of instruction. Still, the overall
performance of giving pupils only the rule is a bit of a mystery and
seems to contradict what most mathematics educators might expect.

Ellerbruch is presently doing a study similar to Choate's but using
the algorithm for addition and subtraction of fractions. (Results were
not available when this was written, but the study has been completed
since and is listed in the references.)

Directions for Research on Fractions

Two other documents seem important in assessing directions for
further research on fractions. One is from cognitive psychology with
emphasis on information processing. The other is a report on seventh
grade pupils' thinking patterns in computation.

Greeno. For the past two years, James Greeno, a cognitive psychol
ogist in the Psychology Department at Michigan, has been involved in
discussions of the fraction research at Michigan. He participated at
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times in teaching and developing the initial fraction sequence. He gave
freely of his time and his ideas in the construction of the sequences
and in designing the lessons. He devised protocols and interviewed students
at various junctures in the research in an effort to learn more about the
cognitive structures the pupils were acquiring. And, he helped all of the
investigators to deepen and to sharpen their knowledge of cognitive
psychology.

Greeno has just written a chapter for a forthcoming yearbook (in
press) that provides a highly useful psychological framework for the
fraction research at Michigan. It is used now in retrospect because
it has just appeared. It will be even more useful in future research.
Some of the main points from his chapter are summarized here. Greeno
should be held responsible for neither this summary lior these
interpretations.

Perhaps the most important idea from Greeno (in press) for the
fraction work is that quantitative concepts are procedures for working
on spatially represented magnitudes. He gives a flow chart of the
procedures used for the initial fraction concepts. The flow chart
includes "images," and such geometric words as "regions" and "congruence."
He views this as a spatial network. He cites evidence that comparions
such as "Tom is taller than Bill" are done by using a representation
with the properties of spatial ordering. After other evidence, he
concludes that the concept of fractional quantity should be taught as
a set of procedures for manipulating spatial magnitude. He sees
spatial representation as an important component of problem solving.

He sees understanding of concepts and skills in computation as at
least partially separable components of knowledge. He describes the
process of getting equivalent fractions using regions and diagrams as a
spatial processing. He sees the algorithm of multiplying/dividing the
numerator and denominator of a fraction by the same number as being a
different cognitive structure, a different concept of equivalent fractions.

Using examples from psychophysics. Greeno points to a relationship
between some spatial processing routines and a network of primarily verbal
concepts. He sees problem solving involving quantitative concepts as
using a person's general mechanisms for language comprehension and con-
cepts reLrieved from semantic memory. This writer is uncertain of Greeno's
view of the relation between spatial representation and verbal rules for
computation that may or should exist in one's semantic memory.

Greeno's work is important because it provides a different and
potentially more useful framework for describing the mental processes
involved in mathematics learning. His spatial processing of information
is useful in interpreting concrete materials and diagrams. His view and
work on verbal rules should be helpful in understanding algorithmic
learning.
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Lankford. Lankford (1972, 1974) has reported in careful detail the
thinking patterns revealed by 176 seventh grade pupils as they thought
aloud in computing 13 whole number and 15 fraction exercises and in
answering eight comparison questions (e.g., "Which is larger, 2/3 x 5 or
1 x 5?"). Incorrect algorithms were prevalent and varied for all the
operations with fractions. On addition of fractions, 62 pupils added
both the numerators and the denominators. With multiplication of mixed
numbers by a whole number, often the whole numbers were multiplied and
the fractions then merely affixed to the answer. A large number of
pupils found a common denominator in doing both multiplication and
division with fractions.

Lankford found that good computers (a) knew the "facts" and did
not use primitive methods such as counting; (b) followed conventional
algorithms rather consistently; (c) used paper and pencil more than
would appear necessary; (d) did better on comparison exercises (all the
comparison exercises involved fractions); and (e) sensed more often
when an answer was wrong.

He found that poor computers (a) made extensive use of counting and
often made errors with it; (b) had more trouble with fractions than with
whole numbers; (c) devised what seemed as obvious procedures such as
adding both the numerators and denominators; (d) often switched to a
different algorithm to get an answer when they ran into trouble; (e) often
supported by reason, even if faulty, what would appear to be careless
errors; (f) had great difficulty with long division; and (g) frequently
confused 0 and 1.

Lankford's careful documentation of the way children think and his
astute observations on characteristics of good computers should help in
designing more effective instructional sequences. This should help in
research studies which aim at devising improved sequences for the various
topics related to fractions.

With these additional documents in mind, suggestions are given for
research on initial fraction concepts, equivalent fractions, addition and
subtraction, and other topics.

Initial Fraction Concepts and Language

The major spatial representation for fractioris in IFS was a region,
including circular as well as rectangular ones. TAnumber line was
included. There were major difficulties with the number line model, with
fewer students mastering this linear model than the area model.
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When the sequence was taught, there seemed to be no trouble when
teaching children to use straws as linear units. But there was trouble
in using the linear idea with number lines. The trouble could have
come because of the ordering required in making a number line. (There was
trouble with comparison questions in the IFS.) Whatever the reason,
there was trouble in making a transition from a straw concrete model to
number line diagrams. Green (1969) had found a similar trouble in making
a transition from concrete objects to diagrams in her study on multipli-
cation of fractions.

Area of needed research: Number line model for fractions.

1. How does one make the transition from the straw model to a
number line?

2. Does inclusion of "0" on the line cause trouble? If so, why?

3. Does extending the line always to the left of 0 and to the right,
usually shown with arrowheads, facilitate or hinder the acquisition of
this linear model?

4. More generally, how effective is the number line as an aid to the
learner, and to what extent is it something extra to be learned?

5. How long does it take a child "master" the number line model
after learning the region model?

All investigators found that the set model for fractions was diffi-
cult to teach. After teaching the set model (e.g., 2/3 is 2 beans out
of 3 or 2 of the 3), the region model with emphasis on measurement seemed
to disintegrate.

The set model is very closely related to ratio; in fact, they may be
the same thing. Since ratio is a topic most mathematics educators consider
important, a way is needed to teach the initial set model and yet maintain
the measurement model.

Area of needed research: Set model for fractions.

1. How does one relate a set model for fractions to the measurement
model, assuming the measurement model is a part of the child's cognitive
structure?

2. Is there an optimal time that should elapse after learning the
measurement model 'Nefore introducing the set model?
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3. Does the usual way of introducing the set model for fractions
require numerical and spatial networks that have not, in fact, been taught,
(e.g., seeing that one -third of the set is circled(X29X X X X)?

There is substantial evidence that achievement is low for interpreting

a/b as a b (e.g., Bidwell, 1968). Junior high school and algebri teachers
often cite this as evidence that kids know nothing about fractions. It

does seem clear that this is an area of difficulty.

Area of needed research: Relating a + b and a/b.

1. What is needed for pupils to make a meaningful connection between
a b and a/b? To what extent is it an extension of the initial interpretation
of fractions, and to what extent is it a new network to be learned? To

what extent does the relation of a b to a/b involve the spatial network
for initial fraction work?

2. At what age and with what knowledge background should the relation-
ship between a b and a/b be taught?

Equivalent Fractions

There is evidence that relating a spatial representation and a verbal
algorithm helps in learning equivalent fractions. The "action" model used
in paper-folding seemed to produce the best results for Bohan.

Regardless of theapproach, however, achievement results are low.
Fourth graders in Coburn's study got only about 50% correct using either
a ratio or a region approach. Green, Bohan, and other researchers still
report poor overall results.

The better achievement on addition/subtraction produced when Coburn
used a region model suggests net a ratio-proportion treatment for the
initial work with equivalent fractions be delayed. This recommendation
is consistent also wiLh the difficulty in use of the set model in the
IFS.

Area of needed research: Equivalent fractions.

1. In what ways should a spatial representation of equivalent fractions
(regions and perhaps line segments) be related to the verbal rules for
producing equivalent fractions?
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Coburn's high correlation between spatial processing and similar
problems using only fraction symbols is worth examining. Could it be
that both the spatial model for equivalent fractions and verbal rules
develop over a long period of time and that the development of Verbal
rules be viewed the same way? Or, should the spatial model and verbal
rules approaches be viewed as completely different instructional
strategies?

2. How much time is needed to teach equivalent fractions so that
students master the topic? Is there an optimal age for teaching
equivalent fractions?

3. Assume that equivalent fractions has been taught with heavy
reliance on spatial models measuring regions and segments. Should the
ratio mod:.1 be taught separately, or should it be related to the measure-
ment notion of equivalent fractions?

4. Why is them so much more difficulty with lower terms than with
higher terms? Should they be taught at different times in the curriculum?

Area of needed research: Addition and subtraction of fractions.

In Bidwell's study on division of fractions, the two most successful
algorithms, Inverse Operation and Complex Fraction, used spatial models
very sparingly. On both models, there was a loss on retention after three
weeks of 25-35%. Green's four approaches to multiplication did use
spatial models, and her loss in retention on all treatments was only
10-15%.

This writer is convinced that there should be some spatial models,
probably because they give better structures and also better retrieval
from semantic memory. The way the rules and spatial models can and
should be related is still a major question. This question arises as
one views all the computational work with fractions.

When Ellerbruch and Payne were reaching addition/subtraction of fractions
in grade four, they found that they mould get almost 100% mastery of
addition and subtraction of like fractions after mastery of the initial
fraction concepts. Ellerbruch (1975) has further information (which was
unavailable at the time this paper was written) on the relative effects
of different placements of the verbal rules in his study on addition/
subtraction where the spatial model is followed by the verbal rules, and
conversely. Choate's reults on comparison of fractions is convincing
us that both verbal rules and spatial representation cannot be taught
at the same time in parallel fashion.

1. Should addition and subtraction of fractions with unlike denominators
be delayed until mastery of equivalent fractions?

2. How should the verbal and spatial representations for the
addition/subtraction algorithm be related?
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3. With relatively low achievement on addition/subtraction, should
our instructional objectives be modified on the extent of content to be
included in the curriculum and on the placment of the content in the
curriculum?

4. With Lankford's results on pupils' frequent choice of an incorrect
algorithm, one wonders about instructional strategies.

What is the effect of teaching an algorithm when many children do
not "master" it? Does this make the algorithm more difficult to learn
correctly later? Does the learning of an incorrect algorithm initially
in effect double the time to learn it correctly (e.g., time to unlearn
what is wrong and time to learn it correctly)?

Other Topics

Similar questions can be asked about the other computational topics
with fractions. However, dependable information from one area may be
easily generalizable to other areas and, in fact, may be generalizable to
computation with whole numbers.

Overall, the Michigan studies show that it takes a very much longer
period of time to teach any part of the fraction work than has generally
been allowed in instructional materials or curriculum guides. Better and
more reliable information is needed on the length of time it takes with
various groups of children to teach fractions and operations on fractions.

In the Michigan studies, problem solving and applications have not
been examined very carefully, although they have been included as dependeht
measures in many studies. There is much to be done in this area, espe-
cially with operations on fractions. There is strong evidence that finding
fractional parts with sets is difficult, and it seems to be generally
accepted that most pupils do not know when to use given operations on
fractions. Some specific questions in his area are:

1. Why is it so difficult to learn how to find fractional parts
(e.g., 2/3 of 12)?

2. Should finding fractional parts be related more strongly to
fraction concepts or to whole number operations?

3. Does improvement in the development of spatial representations
for fractions lead to better results on problem solving?
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Summary

Overall, the Michigan studies began by comparing various approaches
to an algorithm, always trying to understand better what is happening in
the learner's mind. The initial comparative studies have evolved into
studies aimed more directly at assessing the quality and durability of
the cognitive structure the learners are building. With a national
preoccupation for computation and with our own belief in quantitative
thinking and problem solving, there is a need to address research more
directly to the questions of how to produce each of these and what
relation exists between them.
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Analysis and Synthesis of Research on Children's Ordinal

and Cardinal Number Concepts*

Charles J. Brainerd

University of Alberta

This paper is broadly concerned with the present state of knowledge
about how and when children learn the concepts of ordinal and cardinal
numbers. It is concerned, more particularly, with lawful age-related
changes in these two concepts and with possible developmental asyn-
chronies between them. The paper also deals, to a lesser degree, with
the roles played by ordinal and cardinal number in the early gruwth
of arithmetic skills. For the most part, the research that I shall
review is descriptive. That is, the emphasis is on the findings and
not on possible explanations. Although some explanatory hypotheses
will be suggested, the formulation and testing of explanations is a
process that is only just beginning. First, we must be sure of our
facts. It is the purpose of this review to say what some of the facts
are.

I do not propose to review the literature on children's prearith-
metic-numerical ideas exhaustively. An exhaustive review seems
inadvisable for at least two reasons. First, my aim is to focus on
developmental and functional relationships between ordinal, cardinal,
and natural number. It happens that the bulk of the literature is
irrelevant to this purpose. Virtually all studies ostensibly concerned
with prearithmetic numerical skills focus primarily on cardinal number.
Second, exhaustive reviews of studies concerned with both ordinal and
cardinal number are already available (ilvainerd, 1973a, 1975a, 1975b;
Bryant, 1974; Flavell, 1970). For these reasons, I shall stress
interpretation of the data herein. In particular, I shall stress an
interpretative framework, the ordinal theory of number development,
presented elsewhere (Brainerd, 1974, 1975a).

*
This paper was prepared for the Research Workshop on Number and

Measurement, Georgia Center for the Study of Learning and Teaching
Mathematics, University of Georgia, April, 1975.
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Definitions and Terminological Conventions

Since our subject is a mathematical one, it may be helpful to
begin with some general remarks about three concepts which occur
repeatedly in the remainder of this paper, viz., ordinal number,
cardinal number, and natural number. The remarks are in the nature of
a logical characterization of each concept. I hasten to add, however,
that these characterizations are far from what mathematicians would
recognize as logically rigorous. My goal is simply to communicate
most of the logical ideas on which ordinal, cardinal, and,natural
number rest. I am led to do this by the fact that most research on
these concepts conducted by psychologists is only vaguely related to
their logical characterizations. For example, in some studies, the
ordinal number measure consists of learning to discriminate one posi-
tion from another, and the cardinal number measure consists of learning
to discriminate on manyness from another. Whatever the other merits
of these studies may be, the concepts they measure ate neither clear
nor complete embodiments of ordinal, cardinal, and natural number.
Therefore, it seems that research on children's number concepts could
only benefit from some remarks on these concept's logical foundations.
It is hoped that mathematical readers will forgive the imprecision of
the remarks.

By the sTstem of ordinal numbers" we shall understand the unending
sequence of numerals 1, 2, 3, . . ., where each numeral denotes one and
only one term in some progression. By a "progression," we shall under-
stand any collection of terms which (a) has a first term, (b) has no
last term, (c) has no repeated terms, and (d) is such that every term
can be reached from the first term in finitely-many steps. The ordinal
number 1 is the symbol that we map with the "first" term of a progres-
sion, the ordinal number 2 is the symbol that we map with the "second"
term of a progression, ordinal number 3 is the symbol that we map
with the "third" term of a progression, and so on.

The most common examples of progression are the arithmetic and
geometric progressions of algebra. What these progressions have in
common is an underlying transitive-asymmetrical relation. (The transi-
tive- asymmetrical relation underlying any given progression is sometimes
informally termed a generative law.) By a "relation," we shall under-
stand any propositional function of the form Rab where a and b are
variables: In other words, a relation is any propositional function
which contains two unknown terms. The values of a relation refers to
any collection of terms which make the propositional function a true
statement when they are used as interpretations of the variables.
Statements of the form "a admires b," "a is shorter than b," and "a is
the cube root of b" are relations. A relation is transitive if, for
any three values x, y, and z of its variables, Racy is true if Ryz and
R are both true. Thus, "a is shorter than b" is transitive, but
nxYa admires b" is not: If Mary is shorter than Jim and Jim is shorter
than John, then Mary is shorter than John; but if Mary admires Jim and
Jim admires John, Mary may or may not admire John. A relation, is
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asymmetrical if, for any two values x and y of its variables, Rxy is
not true when Ryx is true and conversely. Because transitive-
asymmetrical relations are what all progressions have in common and
because ordinal numbers, as I wish to refer to them, are placeholders
for the terms of progressions, the notion of transitive-asymmetrical
relation is the basic logical idea underlying the concept of ordinal
number and the concept of a progression is synonymous with the concept
of transitive-asymmetrical relation. This simplifying convention will
be made in spite of the fact that the latter concept i9 more general
than the former two. For example, there are collectiqns df values that
satisfy the unknown terms of certain transitive7a4Mmetrical relations
which are not progressions in the aforementioned sense. A collection
of terms which satisfies the transitive-asymmetrical relation "a is a
descendant of b," for example, is not necessarily a progression.

By the "system of cardinal numbers," we shall understand the
unending sequence of numerals 1, 2, 3, . . ., where each numeral denotes
a class of equivalent classes. By a "class," we shall understand any
propositional function which contains one unknown term. By an "element"
or a "member" of a class, we shall understand any interpretation (value,
meaning, etc.) of the unknown term which makes the propositional
function a true statement. Two classes R and Rb are said to be equiva-
lent if for every member of Ra there correspondssponds one and only one member
of Rb and conversely. If the correspondence between the respective
members of the two classes is one-to-one, then the classes contain
equally-many members. Two classes are said to be nonequivalent when
the correspondence between their respective members is not one-to-one.
The members of any class of equivalent classes are classes of the same
manyness, where the relative manyness of two classes is determined by
the type of correspondence between their respective members. Thus,
while ordinal number is based on the idea of progression which in
turn is based on the idea of transitive-asymmetrical relation, car-
dinal number is based on the idea of a class of equivalent classes which
in turn is based on the idea of one-to-one correspondence between
the respective members of two or more classes.

By the "system of natural numbers," we shall understand the
unending sequence of numerals 1, 2, 3, . . ., where each numeral both
denotes one and only one term in some progression and denotes a class
of equivalent classes. Classical arithmetic took the natural numbers
as its starting point. Today, we know that arithmetic can be founded
on either the ordinal or cardinal meanings of natural numbers. The
forMer fact was discovered during the latter half of the 19th century
by Dedekind and Peano (e.g., see Russell, 1903, chaps. 24 & 29),
and the latter fact was discovered somewhat later by Frege and Russell
(e.g., see Quine, 1969). Although there seems to be no basis for
choosing between the ordinal and cardinal meanings of natural numbers

197



192

from a logical point of view, there is no denying that the ordinal
meaning is historically more important in the development of mathe-
matics. In Euclid's Elements, for example, the characterization of the
natural numbers, though informal by modern standards, is purely ordinal.
(See Definition 5 in Book V and the theory of proportions in Book
VII.

1
) Similarly, during the second half of the 19th century, Cantor,

Dedekind, and Peano were able to show that the numerical aspects of
all classical mathematics--i.e., arithmetic, algebra, analysis, and
geometry--depended only on the fact that natural numbers denote terms
in progressions (see Russell, 1903, chap. 29). The first laws of
classical arithmetic (associativity, commutativity, and distributivity),
for example, were shown to depend on the fact that symbols which appear
in them denote the terms of progressions (e.g., Dedekind, 1888). In
view of their historical importance, 19th century mathematicians
tended to view ordinal numbers as logically more fundamental than
cardinal numbers. Of course, Russell (1903; Whitehead & Russell, 1910-1913)
later showed that this was not the case,and (a) classical mathematics
can be based on either ordinal or cardinal number and (b) the concept
of ordinal number can be used to define the concept of cardinal number
or the concept of cardinal number can be used to define the concept of
ordinal number. Thus, either the ordinal or cardinal meaning of
natural numbers will suffice for arithmetic and the rest of classical
mathematics. Although there may be aesthetic and/or philosophical
and/or psychological reasons for preferring one meaning over the other,
there do not appear to be any purely logical grounds for choosing to
base arithmetic on one rather than the other.

Ordinal Theory of Number Development

From the fact that ordinal and cardinal number are equally basic
logically, it does not necessarily follow that they are equally basic
psychologically. The theoretical framework which I should now like to
summarize proposes that (a) ordinal number is psychologically more
basic than a cardinal number, and (b) ordinal number plays a more

1
I am indebted to F. S. C. Northrop, Sterling Professor of

Philosophy at Yale University, for drawing my attention to the fact
that ancient (reek mathematicians in general and Euclid in particular
used an ordinal definition of the integers.
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important role in the early growth of arithmetic concepts and skills
than cardinal number does. The theory was devised to explain the
findings of a series of studies conducted in my own laboratories
(Brainerd, 1973a, 1973b, 1974, 1975a; Brainerd & Fraser, 1975). These
studies deal primarily with the developmental and functional relation-
ships between ordinal, cardinal, and natural number. Since the theory
reflects the present incomplete state of our knowledge about these
relationships, it goes without saying that theory itself is incomplete.
In fact, to be perfectly accurate, the theory is ,tot so much a theory
as a crude working hypothesis that requires constant revision as more
data come in.

To begin with, it is taken as axiomatic that any theory of
number development, whatever else it may do, must try to explain the
origins of arithmetic concepts in children's thinking. That is, it
must try to explain how children come to recognize that statements
such as "one plus one are two" and "four minus two are two" are true
and statements such as "one plus one are seven" and "four minus two
are three" are false. In short, a theory of number development must
try to explain, however incompletely, how we first come to manipulate
the natural numbers in ways consistent with the laws of arithmetic.
To lose sight of this aim as, for example, Piaget's theory of number
development does (see Brainerd, 1975a, chap. 6), is to create a theory
of little general interest.

A theory of number development, like any other developmental
theory, should be historical. That is, it should try to explain later
acquisitions in terms of earlier ones. Historical explanations lead
to two general kinds of empirical predictions--ordinal ones and
functional ones. The former, as the name suggests, are concerned with
the order in which two things (behaviors, concepts, etc.) are acquired.
If one thing is a necessary condition for another, it follows that
children should acquire that thing before they acquire the thing for
which it is a necessary condition. Simple cross-sectional designs
normally are used to investigate ordinal predictions. Evidence that
one thing invariably precedes another only suggests that the earlier
thing may be a necessary condition for the later thing. It does not
prove the hypothesis. The confirmation of such a hypothesis requires
the examination of functional predictions. Verification of such pre-
dictions is the sufficient condition for inferring that one thing is
a necessary condition for another. Training eNperiments are used to
study functional predictions. In such an experiment, we conclude that
one thing is a necessary condition for another if training that thing
produces correlated improvements (transfer) in the other thing.

The central assumption of the ordinal theory is that, at least in
the beginning and probably later also, emerging arithmetic competence
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depends primarily on a prior grasp of ordinal number. Conversely, it
is assumed that a prior understanding of cardinal number is not very
closely connected with the emergence of arithmetic competence. As it
now stands (as of early 1975), these proposals lead to three general
types of predictions: (a) predictions about the development of ordi-
nal number, (b) predictions about the development of cardinal number,
and (c) predictions about the relationships between ordinal, cardinal,
and natural number.

Development of Ordinal Number

According to the ordinal theory, the concept of ordinal number
is ultimately rooted in a certain type of perceptual experience, viz.,
perceived ordinality. The notion of perceived ordinality is concerned
with the perception of everyday transitive-asymmetrical relations
(e.g., "taller than," "louder than," "heavier than") that underlie
concrete empirical progressions. To be a source of perceived ordi-
nality experiences, a given empirical progression must have three
principal characteristics: first, it must have at least three terms
(with two terms there is asymmetry but no transitivity); second, the
pairwise relational differences between the various terms must all be
large enough to be directly perceptible; third, the ordering of the
relational differences between the various terms must be perfectly
correlated with a common perceptual ordering of some sort (e.g., a
spatial ordering, a temporal ordering). Three illustrative visual
stimuli which produce perceived ordinality are shown in Figures 1A,
1D, and 1E. Each stimulus consists of more than three dots, and the
underlying transitive-asymmetrical relation in virtue of which each
group of dots forms a progression is "larger than." Note that, in line
with the second and third of the preceding conditions, the pairwise size
differences in each progression are highly perceptible, and the left-to-
right ordering of each collection is perfectly correlated with the ordering
of the size differences. With concrete progressions which meet all three
of the preceding conditions, we believe that subjects are capable of
directly perceiving the underlying transitive-asymmetrical relations at
a very early age. Percepts of this sort are what the ordinal theory means
by "perceived ordinality." Percei ed ordinality may well be a natively-
given percept in so far as vision slid audition are concerned. For our
purposes, however, it is sufficient that perceived ordinality appears
several years before children evidence any understanding of arithmetic.
A simple experiment suffices to show that even very young children are
capable of perceived ordinality. Suppose we give a two-year-old a very
brief exposure--say one or two seconds--to a stimulus which consists of
Figure 1A. We then present a recognition stimulus which consists of
Figures 1B, 1C, 1D, and 1E. The child is asked to select the figure
which contains the same dots as the original stimulus. Figure 1D
and Figure lE will be most frequently chosen (Brainerd, 1975a, chap. 6).
However, note that none of the dots in either of these progressions is the
same as any of the dots in Figure 1A. The only thing that is the same
about these three collections is the underlying transitive-asymmetrical
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relation. In contrast, Figures 1B and 1C are only rarely chosen. And
yet, the dots in each figure are exactly the same as the dots in
Figure 1A. But the underlying ordering of the dots in terms of their
relative size is not apparent to direct perception. It is from
perceptual experiences of the sort illustrated in Figures 1A, 1D, and
lE that the concept of ordinal number evolves--or so the ordinal
theory supposes.

A 0 0 000
B 0

c 0 0 0 0
D 0 0 0 0 0
E 000000 0
Figure 1. Some illustrative stimuli for

studying perceived ordinality.

From the antecedent ability to perceive ordinality, internalized
concepts of order develop during the preschool years. Our most recent
evidence (Brainerd & Siegel, 1975; Siegel, 1974) indicates that the
development of such concepts begins no later than age three, and, in all
probability, it begins substantially earlier. To date, research on the
early growth of internal ordering concepts has been confined to
observing agerelated improvements in such concepts. The process whereby
these improvements take place is, as yet, poorly understood. There is
reason to believe that the laws of discrimination learning are involved.
There also is reason to believe that the linguistic and imagery skills
which emerge during the preschool years are involved. However, it is
impossible to be more specific than this at present. The emergence of
internal ordering concepts during the preschool years is suggested by
children's capacity to solve two general types of ordering problems.
The first type of problem is what I call discriminative ordinality.
As the name suggests, problems of this sort, unlike perceived ordinality,
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involve at least some learning. Discriminative ordinality problems
involve stimuli which satisfy only the first two of the above con-
ditions for perceived ordinality stimuli--i.e., they contain three or
more terms, the relational differences between terms are all highly
perceptible, and the terms' spatial or temporal order is uncorrelated
with the ordering of their relational differences. Figure 1B and
Figure 1C are stimuli of this sort, as are Figures 2A and 2B. Figure 2
may be used to illustrate a typical discriminative ordinality problem.
The subject is first presented with a series of stimuli which each
contain the dots shown in Figure 2A; .the left-to-right ordering of the
dots differs from one stimulus to another. The subject is reinforced
for making the transitive-asymmetrical response "middle-size." When
the subject has learned this response to some criterion, he or she is
shifted to a new series of stimuli. Each stimulus in the new series
contains the three dots shown in Figure 2B, and the left-to-right
ordering of the dots is different for different stimuli. The subject
is again reinforced for middle-size. If the subject did not learn the
correct ordinal discrimination on the first series of trials, but
instead, simply learned to respond to a certain absolute size, there
should be pronounced negative transfer with the second set of stimuli.
However, if the subject learned the correct ordinal discrimination on
the first series of trials, there should be no negative transfer. The
latter is what we find, at least down to and including age three.
Some illustrative data from a recent experiment of this sort conducted
by Linda Siegel and I appear in Figures 3 and 4. The curves in
Pure 3 show the average numbers of middle-size responses made by
tree- to six-year-olds with a series of stimuli like Figure 2A during
ate initial block of 24 discrimination learning trials. The curves in
Figure 4 show the average numbers of middle-size responses made by the
same subjects with a series of stimuli like Figure 2B during a second
block of 24 discrimination learning trials. Note that (a) there is no
evidence of negative transfer from the first set of stimuli to the
second, and (b) the performance of even three-year-olds was far above
chance. Hence, it seems that by age three, and perhaps considerably
earlier, there is good evidence of discriminative ordinality in North
American children.

0 0
O

Figure 2. Some illustrative stimuli for
studying discriminative ordinality.
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The second group of problems whose solution seems to suggest the
presence of internal ordering concepts is what I call ordination. Ordi-
nation problems are designed to be fairly precise embodiments of the
logical definition of ordinal number (Brainerd, 1973a, 1975a, chap. 7).
As discriminative ordinality problems were one step more difficult than
perceived ordinality, so ordination problems are one step more difficult
than discriminative ordinality. More particularly, ordination problems
involve progressions which satisfy only the first condition for perceived
ordinality stimuli--i.e., they contain three or more terms but the relational
differences between terms are not highly perceptible and the spatial or
temporal ordering of the terms is uncorrelated with the ordering of their
relational differences. There are two general types of ordination problems,
viz., seriation and transitive inferences. Concerning the former, a subject is
given three or more objects that differ in terms of some common transitive-
asymmetrical relation ("taller than," "longer than," "heavier than," etc.).
The pairwise asymmetries between the various terms are small and not
apparent to direct perception. The subject is instructed, first, to
ch,termine all the pairwise asymmetries by comparing the objects and,
nccktd, to put the objects in order from least to greatest or greatest
to ?east. Two illustrative problems are shown in Figure 5. On the right
in Figure 5, the subject is given three balls which look identical but
which actually differ in relative weight. The subject's task is to
determine the direction of the weight difference between each of the
three possible pairs and then to arrange the three balls in order. At
the left of Figure 5, a similar task is shown which involves three
sticks that differ in length by tiny amounts. Transitive inference
ordination problems resemble seriation ordination problems. The only
difference is that subjects are not allowed to make all possible pair-
wise comparisons. Instead, they are required to deduce some pairwise
asymmetries from others. To illustrate, suppose that the three balls
shown at the top of Figure 5 weigh 50 grams, 100 grams, and 150 grams,
respectively. In a typical transitive inference problem, the subject
would compare the 50 gram ball with the 100 gram ball, compare the 100
gram ball with the 150 gram ball, and then be required to deduce the
relationship between the 50 gram ball and the 150 gram ball. In the
ordinal theory, the solution of transitive inference problems is viewed
as the chief indicator of the concept of ordinal number. The fact that
certain asymmetrical relations are transitive, the concept that this
problem is supposed to measure, is called the minimum ordinal proposition
(cf. Brainerd, 1973a, 1975a, chap. 7; Russell, 1903), and it is the
fact that makes progressions logically possible.

Since ordination problems are more difficult then discriminative
ordinality problems, it is assumed that they are solved somewhat later
than discriminative ordinality problems. In particular, while the
ordinal theory proposes that discriminative ordinality is a late-infancy
or early-preschool acquisition, the theory proposes that ordination is
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Successive Ordinal Number Discrimination

Block #1

Six-year-olds
Five-year-olds

Four-year-olds

Three-year-olds

Chance

4 8 12 16 20 24

Trials

Figure 3. Average numbers of middle-size responses made
by three- to six-year-olds on stimuli resembling
Figure 2A. N = 35 per age level.
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Successive Ordinal Number Discrimination

Block # 2

4 8 12 16 20 24

Trials

Six-year-olds

Five-year-olds

Four-year-olds

Three-year-olds

Chance

Figure 4. Average numbers of middle-size responses made by three- to
six-year-olds on stimuli resembling Figure 2B after prior
trials with stimuli resembling Figure 2A. N 35 per
age level.
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a middle-to-late preschool acquisition. The ordinal theory also pro-

poses that the overwhelming majority of children are capable of

ordination by the time they enter kindergarten. Since ordination problems

are cognitive counterparts of the logical definition of ordinal number,

this latter proposal amounts to saying that most children already grasp
ordinal number by the time they enter kindergarten.

Figure 5. Two illustrative situations for assessing ordination.

Development of Cardinal Number

The ordinal theory proposes that the concept of cardinal number,
like the concept of ordinal number, ultimately is rooted in a particular
type of preconceptual perceptual experience. This category of percepts

is variously termed numerousness ;e.g., Underwood, 1966), numerosity
(e.g., Nelson & Bartley, 1961), and, as I shall refer to it, perceived

cardinality. Perceived cardinaltiy is concerned with the direct percep-

tion of manyness differences between pairs of collections. Given certain
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special conditions, we know that preschoolers are able to perceive
manyness differences between pairs of classes. The special conditionsare (a) the manyness difference

must always be very large; (b) neithercollection may contain more than a decade of terms; (c) at least oneperceptual difference is correlated with the manyness difference. Astimulus which satisfies these conditions is shown in Figure 6. Thereare two and two-thirds times
as many dots as triangles; the largestcollection contains only an octet of dots; both the dots and the tri-angles occupy the same amount of space so that the relative manvness ofthe two collections is correlated with their relative density. Withconcrete classes which meet all of these criteria, we know that, by aboutage four, most, children will be capable of directly percei4ing thedirection of the manyness difference. For example, if four-year-olds aregiven brief exposure--say,

one or two seconds--to a stimulus like Figure6 and are then asked, "Were there more dots or more triangles?", they willusually respond correctly (Taves, 1941). Since the brief exposuretime precludes either counting the collections or establishing a corre-spondence between their respective elements, it follows that correctjudgments are perceptual rather than conceptual in nature. The ordinaltheory maintains that the human cardinal number concept evolves fromperceptual experiences such as these.

o

0
0 0

0

Figure 6. An illustrative stimulus for
studying perceived cardinaltiy.
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Internalized concepts of cardinality be4in to evolve from per-

ceived cardinality during the late-preschool and early-elementary school

yearq, recent findings (Brainerd i"). Siegel, 1975) suggest that this

procvld oegins during the fifth year of life in most children. As was

the case for the development of internal ordering concepts, the currently

available evidence does not allow us to be very precise about the under-

lying mechanisms that are responsible for the acquisition of internalized

cardinality. As was also the case for the development of internal order-

ing concepts, the emergence of internal cardinal skills is suggested by

children's solution of two general types of problems. The first of these,

discriminative cardinality, is the cardinal counterpart of the aforemen-

tioned discriminative ordinality problems. Discriminative cardinality,

like discriminative ordinality, is based on learning rather than percep-

tion. Explicitly, discriminative cardinality consists of learning any one

of the first few cardinal numbers (i.e., a unit, a pair, a trio, ...).

Discriminative cardinality stimuli satisfy the last two of the preceding

three criteria for perceived cardinality but not the first. Discriminative

cardinality involves stimuli consisting of three or more classes between

which there are small manyness differences (a single term or a pair of

terms). None of the classes contains more than a decade of terms, and

a perceptual cue (e.g., density or length) is correlated with relative

manyness. Figure 7 and Figure 8 are stimuli of this sort, and they may

be used to illustrate a typical discriminative cardinality problem. The

subject first is shown a series of stimuli like Figure 7. All the stimuli

contain three classes consisting of a pair of dots, a trio of dots, and

a quartet of dots, respectively. The left-to-right ordering of the

classes is varied from one stimulus to another, hut, since each class

occupies the same amount of space, relative density is perfectly corre-

lated with relative manyness. The subject is reinforced for selecting

a particular manyness (e.g., he or she is reinforced for choosing "quartet").

After this response has been learned to some criterion, the subject is

shifted to a new series of stimuli. Each stimulus in the new series

contains the three classes shown in Figure 8. The ordering of the

classes again varies from one stimulus to another, but relative density

is perfectly correlated with relative manyness. The subject once again

is reinforced for choosing "quartet." If the subject did not learn the

correct manyness discrimination on the first series of trials but, in-

stead, learned the transitive-asymmetrical
discrimination "largest," we

would expect clear negative transfer to the new series of stimuli. How-

ever, if the subject learned the correct manyness discrimination on the

first series of trials, there should be no negative transfer. Prior

to about age six, we find massive negative transfer. Some illustrative

data from a recent experiment on this question conducted by Siegel and

I are shown in Figures 9 and 10. Figure 9 shows the average numbers

of correct quartet responses made by three- to six-year-olds on a series

of stimuli like Figure 7 during an initial block of 24 discrimination

trials. Note that although discriminative cardinality appears to be more
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difficult for each of the age groups than discriminative ordinality
(compare Figure 3 with Figure 7), even the three-year-olds appear to
be performing above the chance level. Figure 10 shows the average
numbers of quartet responses made by the same subjects on a series of
stimuli like Figure 8 during a second block of 24 discrimination trials.
Note that (a) there is a massive negative transfer at all age levels
and (b) only the six-year-olds appear to be performing above the chance
level. This suggests, at least. to Sigel and I, that discriminative
cardinality emerges sometime between age five and age six and that,
before this age, children learn a purely relational discrimination on
discriminative cardinality problems.

The second and more crucial type of problem used to assess inter-
nal cardinal concepts is cardination. As ordination problems are designed
to be precise embodiments of the logical definition of ordinal number,
so cardination problems are designed to tap the components of the logical
definition of cardinal number (Brainerd, 1973a, 1975a, chap. 7). That
is, cardination problems are presumed to evaluate a given a child's under-
standing of the connection between type of correspondence and relative
manyness. Cardination problems involve stimuli which are slightly more
difficult than those just described for discriminative cardinality.
Cardination problems involve sets of stimuli consisting of pairs of
classes which, first, contain no more than a decade of terms, second,
between which there is either no manyness difference or only a very
small difference, and, third, no perceptual cue is perfectly correlated
with relative manyness. A set of six such stimuli appears in Figure 11.
Each of these stimuli consists of two parallel rows of dots; the upper
row is always red and the lower is always blue. In conjunction with

aeach stimulus, a given subject is asked to judge whether or not the reds
are more numerous, less numerous, or equally numerous as the blues.
Two perceptual cues, length and density, are available. However, neither
is an infallible guide to relative manyness. If the subject depends on
the length cue (i.e., longer = more numerous), then he or she will
miss all the items. If the subject depends on the density cue (i.e.,
denser = more numerous), then he or she will miss at least two of the
items. The only way, apart from counting the terms in each class, that
the subject can always respond correctly is by establishing a term-by-
term correspondence between the reds and blues. If we forbid counting,
this leaves only correspondence. In the ordinal theory, the solution
of sets of problems such as these is the principal datum on which the
conclusion that-a given subject possesses the concept of cardinal number
is based.
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0
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0

Figure 7. A stimulus containing a pair, a trio, and a quartet
of dots which is used to study discriminative cardinality.

0

0
0 0

0

0 0
0
0

0
0

Figure 8. A stimulus containing a trio, a quartet, and a quintet
of dots which is used to study discriminative cardinality.
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Figure 9. Average numbers of quartet responses made by three-
to six-year-olds on stimuli resembling Figure 7.
N = 35 per age level.
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Figure 10; Average numbers of quartet responses made by three- to
six-year-olds on stimuli resembling' Figure 8 after prior
trials with stimuli resembling Figure 7. N = 35 per
age level.
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The ordinal theory proposes that children do not possess complete
internal cardinality, as indexed by the solution of cardination problems,
before the second half of their elementary school years--and perhaps
somewhat later.

Development of Ordinal, Cardinal, and Natural Number

The most distinctive feature of the ordinal theory of number develop-
ment is a posited sequence in the development of numerical concepts which
conflicts with certain beliefs which currently are popular in North
American educational circles. The posited sequence is: ordinal number +

natural number + cardinal number. It will be recalled that we are taking
the initial facts of arithr..:tic, the capacity to manipulate the first
few integers in prescribed ways, as our index of natural number. There-

fore, the theory predicts that most children will make considerable
progress in the ordinal sphere before they make any progress in either
the arithmetic or cardinal spheres. Further, the theory predicts that
children will acquire considerable facility with arithmetic before they
grasp cardinal number. Historically speaking, the second and third
predictions are the most important. Concerning the ordinal number +
cardinal number sequence, it is usually assumed today that, cognitively,
cardinal number either is a more basic concept than ordinal number or
that the two are equally basic (Brainerd, 1975a, chap. 6). However,

the ordinal theory maintains that most children grasp ordinal number
long before they comprehend cardinal number. The theory predicts, more
particularly, that each of the various levels of cardinal sophistication
described above lags behind the corresponding level of ordinal sophis-
tication. Concerning the natural number + cardination sequence, it is
widely assumed, especially among mathematics educators, that the concept
of cardinal number is more basic than arithmetic (Brainerd, 1975a,
chaps. 6 E. 11). More than any other factor, the advent of the so-
called "new school mathematics" in North America has fostered this belief.
However, the ordinal theory maintains that arithmetic initially is more
basic than cardinal number.

Functionally, the ordinal theory maintains that the early growth
of arithmetic is directly dependentson prior achievements in the
ordinal sphere. Early arithmetic growth is presumed to be especially
dependent on understanding the ordinal meanings of the first few natural
numbers and the primary operations of arithmetic. Conversely, the ordi-

nal theory proposes that the early growth of arithmetic is largely inde-
pendent of prior achievements in the cardinal sphere. Although cardinal
concepts may become relevant later on, the initial arithmetic skills do
not appear to depend on either understanding the cardinal meanings of the
first few integers or the cardinal meanings of the primary operations
of arithmetic.
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Empirical Evidence

Let us turn now to the literature on children's prearithmetic
numerical concepts for purposes of determining the extent to which this
literature confirms or disconfirms the predictions we have just consi-
dered. As I mentioned earlier on, I do not propose to review this
literature exhaustively. In fact, I propose to restrict the review to
three large-scale normative studies and two training experiments con-
ducted at the University of Alberta and a replication study conducted
under the auspices of the University of Wisconsin's Research and Develop-
ment Center for Cognitive Learning. The former group of investigations
was conducted between 1972 and 1974, while the latter study was conducted
during late-1973 and early-1974. I justify reviewing the literature
in this admittedly selective manner on three principal grounds. In

"the first place, as I observed previoubly, the great preponderance of
currently available studies has nothing to do with our central theme,
viz., developmental and functional connections between ordinal,
cardinal, and natural number concepts. This is not to say that the
literature is entirely devoid of investigations which provide evidence
about the predictions with which we are concerned. In particular, studies
reported by Beard (1963), Dodwell (19601961, 1962), Hood (1962), Siegel
(1971a, 1971b, 1974), Wang, Resnick, and Boozer (1972), and, of course,
Piaget's classic studies in The Child's Conception of Number (Piaget,
1952) all provide pertinent evidence. However, and this is my second
reason for restricting this paper to the aforementioned investigations,
I have reviewed these other studies in detail on two previous occasions.
These reviews may be found in part 3 of an earlier monograph (Brainerd,
1973a) and in chap. 7 of The Origins of the Number Concept. Third, each
of the studies to which this review is confined was very expressly
designed to get at one or more of the predicted relationships between
ordinal, cardinal, and natural number that we considered above. This is
definitely not true of other studies. On the whole, these latter studies
were designed for quite different purposes and, consequently, such evidence
as they provide vis-a-vis our central theme tends to be suggestive rather
than conclusive.

Returning to the account of number development considered in the
preceding section, virtually all of the findings that I am about to
discuss are concerned with the final steps of this account. That is,
they focus primarily on the relationships between the cognitive counter-
part of ordinal number (ordination), the cognitive counterpart of cardi-
nal number (cardination), and first arithmetic skills. Therefore, most
of the subjects in these studies are children in the first few elemen-
tary grades. Taken together, these two facts entail that, unfortunately,
we know very little at present about the early growth of ordinal and
cardinal number. More to the point, we know very little about (a) the
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relationship between perceived ordinality and discriminative ordinality,
(b) the relationship between perceived cardinality and discriminative
cardinality, (c) the relationship between perceived ordinality and
perceived cardinality, and (d) the relationship between discriminative
ordinality and discriminative cardinality. Despite our comparative

ignorance about ordinal and cardinal development during infancy and 'the
preschool years, we now know a good deal about the final phases of
number development in the ordinal, cardinal, and arithmetic areas. For

the mnst part, what we know is consistent with the predictions of the
ordinal theory. However, in view of the paucity of data on the earlier
phases of cardinal and ordinal development, there is absolutely no
empirical reason for supposing that the theory's proposals about the
beginnings of number development are correct.

The first study (Brainerd, 1973a, 1973b) was a simple normative
investigation conducted during early-1972. It was designed to focus
narrowly on the developmental relationship between the cognitive counter-
part of ordinal number and the cognitive counterpart of cardinal number.
The ordinal theory, it will be recalled, predicts that the concept of
ordinal number is present in most children by the time they enter
elementary school whereas the concept of cardinal number is not present
until considerably later. Hence, tests of ordination and cardination
such as those described in the preceding section were administered to
a sample of 180 kindergarteners and first-graders selected at random
from several elementary schools located in middle-class areas of
Edmonton. There were three general findings. First, there were three
levels of performance on the ordination tests. Some children (Level I),
always the youngest ones, appeared to be completely incapable of making a
transitive inference; other children (Level II), somewhat older than
these in the first group, could make transitive inferences in some situa-
tion but not in others; still other children (Level III), somewhat older
than those in the second group, always made transitive inferences. The

third group predominated. A clear majority of even the five-year-olds
invariably made transitive inferences in all situations. The second
major finding was that there also were three distinct levels of
cardination performance. Some children (Level I), the youngest, based
their relative manyness judgments on the relative length of the parallel
rows of red and blue dots; other children (Level II), slightly older,
based their relative manyness judgments on the relative density of the
two rows; a final group of children (Level 112), the oldest, based their
relative manyness judgments on the type of correspondence between the two
rows. The first group predominated: 547 of the sample based their re-
lative manyness judgments on relative length; 37% of the sample based
their relative manyness judgments on relative density; only 9% of the
sample based their relative manyness judgments on term-by-term correspon-
dence. The third and by far the most important finding of the study was
that the ordinal number concept appeared to emerge in children's think-
ing long before the cardinal number concept. Slightly more than half
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of the children in this sample (93 of 180) had attained the highest
level of ordination. Only 15 of these children had attained the
highest level of cardination. Moreover, although only 12 of the 93
children who clearly possessed the concept of ordinal number also
possessed the concept of cardinal number, 72 of the 92 subjects who were
functioning at the lowest level of cardinal number clearly possessed the
concept of ordinal number. The findings of this study appear in Table 1.

Table 1

The Developmental Relationship Between Ordination and Cardination

Level of Cardination

Level of
Ordination

No correspondence No

one-one
correspondence

Complete
internal

correspondence

No ordering 0 4 0

Partial
ordering 32 17 3

Complete
internal
ordering

40 41 12

Note. Only 169 subjects who did not count during the cardination
tests appear.

The second study (Brainerd, 1973a, 1973b) was similar in principle
to the first. It was conducted during late-1972. A new sample of 180
kindergarten and first-grade children selected from middle-class Edmonton
schools was administered the same ordination and cardination tests as in
the above study. However, this new sample of children also was adminis-
tered an arithmetic test. The test measured the children's understanding
of the first 16 addition facts (i.e., 1 + 1 = 2, 1 + 2 = 3, ... , 4 + 4 = 8)
and their understanding of the first 16 subtraction facts (i.e.,
2 - 1 = 1, 3 - 1 = 2, ... , 8 - 4 = 4). The general aims of this study
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were, first, to determine whether the findingd of the preceding study
could be replicated and, second, to evaluate the developmental relation-
ships between ordinal number and arithmetic, on the one hand, and car-
dinal number and arithmetic, on the other. Concerning the former aim,
all three of the principal findings of the first study also were observed
with the new sample of subjects. Three distinct levels of ordinal number
performance were noted; three distinct levels of cardinal number performance
were noted; and the concept, of ordinal number was observed to be far in
advance of the concept of cardinal number. Concerning the second aim,
a classification scheme was developed for the arithmetic test to facili-
tate comparison with the ordinal and cardinal number tests. The arith-
metic classification scheme consisted of three levels (below average,
average, above average). It was developed through consultations with
principals and teachers, and it was validated against age. When the
children's ordinal number performance was compared with their perfor-
mance on the arithmetic test, there was clear evidence that, in line
with the ordinal theory's prediction, the ordinal number concept pre-
cedes arithmetic in children's thinking. A total of 119 children
clearly possessed the concept of ordinal number, but less than half of
these children also had attained the highest of the three levels of
arithmetic proficiency. Importantly, roughly ,a third of these 119
children were still below average in arithmetic proficiency. When the
children's cardinal number performance was compared with their arith-
metic performance, the findings were the reverse of those just mentioned
for ordinal number. A total of 95 children were functioning at the
lowest of the three levels of cardinal number (i.e., longer = greater
manyness). Roughly half of these 95 children evidenced either above
average or average arithmeti" proficiency. The findings of this study
appear by type of test in ' 2.

It is obvious that, on tt whole, the findings of the preceding two
studies tend to confirm the ordinal number 4- natural number 4- cardinal
number sequence posited in the ordinal theory. Before moving on to new
findings, I should like to discuss another normative study concerned
with this same sequence which recently has come to my attention. The
study is, in most respects, a straight forward replication of the second
of the two studies we have just examined. The study was conducted during
late-1973 and early-1974 by a group of investigators headed by F. H. Hooper
at the University of Wisconsin's Research and Development Center for
Cognitive Learning. The Hooper group conducted the study as part of a
six year longitudinal investigation of various Piagetian concrete-
operational concepts. Although the data are as yet unpublished, Dr.
Hooper generously passed along the findings of the replication in June
of 1974. The motivation for this replication, at least as I understand
it, is that the ordinal number 4- natural number 4- cardinal number sequence,
though consistent with the predictions of the ordinal theory, is blatantly
inconsistent with certain predictions of Piagetian theory. Piaget, for
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Table 2

The Developmental Relationships Between Ordination, Cardination and

Arithmetic Competence

Ordination and Cardination

Arithmetic Level of Ordination Level of Cardination

I II III I II III

Addition
proficiency

Below average 20 17 35 55 10

Average 2 16 38 30 14 7

Above average 0 6 46 25 19 20

Subtraction
proficiency

Below average 7 14 16 18 3 0

Average 0 6 17 8 16 6

Above average 0 3 27 10 21 8

Note. The upper half of the table includes all 180 subjects who
participated in Study II, but the lowest half of the table
includes only the 90 first graders.

obscure reasons which I confess that I hive never been able to fathom,
maintains that developmental changes in the ordinal, cardinal, and
natural number spheres always occur in tight synchrony with each other
(e.g., cf. Beth & Piaget, 1966; Pieget, 1952, part 2). The findings of
the two studies just discussed, whatever else they may show, certainly
do not support the synchrony predicted by Piagetian theory. Therefore,
to investigators who, like the Hooper group at the 'University of Wiscon-
sin, are chiefly concerned with the verifiability of '2iagetian theory,
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the replicability of the aforementioned findings is a very important
issue indeed. In the study in question, the ordinal number, cardinal
number, and arithmetic tests administered to the 180 children in the
second of the preceeding studies were administered to a new sample of
elementary schoolers. The new sample consisted of 50 kindergarten
children and 50 third-grade children selected from elementary schools
located in Beloit, Wisconsin. After all 100 children had been adminis-
tered the three types of tests, the classification schemes mentioned
earlier were used to assign each subject to (a) one and only one of the
preceding three levels of ordinal number, (b) one and only one of the
preceding three levels of cardinal number, and (c) one and only one of
the preceding three levels of arithmetic proficiency. The results of the
Wisconsin replication, although, as I said, still unpublished, recently
have been made available in technical report form by one of the in-
vestigators in the Hooper group (Gonchat, 1974). I report these findings
in Table 3. Note that, in so far as the ordinal number natural number
cardinal number sequence is concerned, this sequence is every bit as

apparent in Wisconsin children as in Edmonton children.

Table 3

The Developmental Relationship Between Ordination and Cardination for

the Wisconsin Sample

Cardination Level
Ordination Level

I II III

Kindergarten

I 9 0 0

II 18 3 0

III 23 7 0

Third-grade

I 1 0 0

II 0 11 3

III 6 26 13
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The fourth study (Brainerd, 1973b; Brainerd, 1975a, chap. 9) I
should like to report, like the second study, was conducted during late-
1972. Unlike the three studies considered up to this point, it was con-
cerned with functional rather than developmental relationships. It will
be recalled that the ordinal theory predicts that the emergence of first
arithmetic skills is directly dependent on a prior understanding of ordi-
nal number and is not directly dependent on a prior understanding of
cardinal number. This leads to the general Otpectation that experimen-
tally produced improvements in children's ordinal number concepts should
lead to ,,:':elated improvements in arithmetic which are more pronounced
than cor,o'ated improvements in arithmetic produced by experimentally
induced improvements in cardinal number. The ordinal number 4 cardinal
number sequence also leads one to expect that it will be more difficult
to induce improvements in cardinal number in the laboratory than to
induce improvements in ordinal number. To test these predictions, a
training experiment was conducted in which some subjects received ordi-
nal number training, some subjects received cardinal number training, and
transfer to arithmetic proficiency was assessed. The experiment con-
sisted of 10 different sessions spaced at intervals of one week. Each of
the subjects who participated in the entire experiment was seen once per
week on 10 separate occasions. During the first of the 10 sessions,
240 kindergarten children were administered the tests for ordinal number,
cardinal number, and arithmetic employed in the aforementioned normative
studies. Following the administration of these pretests, the children
were divided into four groups of 60 subjects each in such a manner that
the average levels of performance on the ordinal number, cardinal number,
and arithmetic measures were exactly the same for all four groups. Twc,

of the four groups were training conditions and the ,other two groups
were control conditions. The subjects in one of the two training con-
ditions received ordinal number instruction during each of the eight
sessions immediately following the pretest session. During each of
these sessions, the training manipulation consisted of presenting a
graded series of ordination problems--seriation and transitive inference- -
involving such everday transitive-asymmetrical relations as "taller
than, "larger than," etc. A simple correction training procedure was
employed. That is, on the graded series of problems administered
during each ordinal number training session, the subjects were corrected
whenever they made an incorrect response, and they received a'reward
whenever they made a correct response. The graded series of ordinal
number problems was administered twice during each training session. The
subjects in the other training condition received cardinal number in-
struction during each of the eight sessions immediately following the
pretest session. During these eight sessions, the training manipulation
consisted of presenting a graded series of cardination problems. The
easiest problems in the series involved making relative manynef-; judg-
ments about collections containing a pair, a quartet, and a sextet of
objects. The most difficult problems in the series were like the car-
dination pretest=i.e., they involved comparing classes which contained
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a sextet, an octet, and a decade of objects. As was the case in the
ordinal number training condition, a simple correction procedure was
employed. The-subjects were corrected whenever they made an erroneous
relative manyness judgment, and they were rewarded whenever they made a
correct relative manyness judgment. The subjects in one of the two
remaining conditions served as controls for the ordinal number training
condition. During each of the eight sessions following the administra-
tion of the pretest, these subjects received the same graded series of
ordinal number problems as the subjects in the ordinal number training
condition. However, the correction procedure was omitted; the problems
were simply administered without comment by the experimenter. The 60
subjects in the last condition served as controls for the 60 subjects
in the cardinal number training condition. These subjects were adminis-
tered the same graded series of cardinal number problems during the
training trails as the cardinally trained subjects received; however,
the correction procedure was ommited. After the eight training sessions
had been completed, all 240 subjects received a readministration of the
ordinal number, cardinal number, and arithmetic tests administered
during the first session 10 weeks earlier. This was done to determine
how the intervening training experiences had altered the children's
grasp of ordinal number, cardinal number, and the initial facts of
arithmetic.

A comparison of the subjects' performance on the tests administered
during the first session with their performance on the same tests 10 weeks
later revealed three major findings. First, it was noted that children's
understanding of both ordinal and cardinal number predictably improved
as a function of training. The average posttraining ordinal number per-
formance of the ordinally trained subjects was significantly better than
the average posttraining ordinal number performance of the ordinal con-
trols. The average posttraining cardinal number performance of the cardi-
nally trained subjects was significantly better than the average post-
training cardinal performance of the cardinal controls. The second major
finding was that, consistent with the ordinal number + cardinal number
sequence predicted by the ordinal theory, the training procedure induced
more substantial improvements in ordinal number performance than it in-
duced in cardinal number performance. Explicitly, the average pretest to
posttest improvement in the ordinal number performance of the ordinally
trained subjects was 30% greater than the average pretest to posttest
improvement in the cardinal number performance of the cardinally trained
subjects. The third major finding of this experiment was that ordinal
number training tended to transfer better to the arithmetic area than
cardinal number training did. The arithmetic performance of the ordinally
trained subjects improved roughly 25% over the 10 week interval. When this
value was corrected for the amount of spontaneous improvement in the ordinal
controls, the correlated improvement in arithmetic as a function of ordinal
number training turned out to be statistically significant. On the other
hand, the arithmetic performance of the cardinally trained subjects
improved roughly 12% over the 10 week interval. When this value was
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corrected for the amount of spontaneous improvement in the cardinal
controls, the residual improvement in arithmetic as a function of
cardinal training was not statistically significant. This latter
finding is not necessarily predicted by the ordinal theory. All the
ordinal theory predicts is that, independent of the absolute improve-
ment in arithmetic which accrues as a result of ordinal and cardinal
training, the improvements in arithmetic which result from ordinal
training will be greater than those which result from cardinal training.
The data for the first session and the tenth session appear by type of
test and experimental condition in Table 4.

Table 4

Average Pretest and Posttest Scores of the Subjects Participating

in Experiment I

Type of Test
Condition

Ordination Ordination Cardination Cardination
training control training control

Pretest

Ordinationa 5.64 5.64 5.64 5.64

Cardination
b

0.96 0.96 0.96 0.96

Arithmeticc 5.12 5.12 5.12 5.12

Posttests

Ordinationa 11.38 6.60 6.24 6.13

Cardination
b

1.32 1.19 2.76 1.56

Arithmeticc 14.13 8.32 8.96 7.88

a
High possible score for each cell = 12.

b
High Rossible score for each cell = 12.

c
High possible score for each cell = 32.
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The next study which I should like to disc s (Brainerd, 1974)
was undertaken in the hope of providing an explanation of the training
experiment that we have just considered. The findings of the preceding
training experiment, especially those on the relative transfer of ordi-
nal number and cardinal number training to arithmetic, tend to support
the ordinal theory's claim that the emergence of first arithmetic.skills
is more dependent on a prior grasp of ordinal number than on a prior
grasp of cardinal number. But why should knowledge of ordinal number
have ,a greater impact on arithmetic proficiency than knowledge of car-
dinal number? The following explanation suggests itself. Arithmetic
proficiency, at least in the beginning, consists simply in being able
to combine the numerals "1," "2," "3," and so forth in certain prescribed
ways. Now, I should say that the numeral symbols whose combination forms
the subject matter of arithmetic are quite abstract and bear no obvious
j'iysical resemblance to anything in our everyday environments. Speaking
as a psychologist, I should think that it would be considerably easier
for children to learn to manipulate these symbols in appropriate ways
if the individual symbols did not remain entirely abstract but, rather,
were assigned concrete meanings of some sort. We know that each of these
symbols has two such meanings--one a positional meaning and the other a
manyness meaning. Suppose, just for the sake of argument, that it is
much easier for children to learn to associate each of the numerals of
arithmetic with its correct ordinal meaning than it is to associate
that same numeral with its correct cardinal meaning. In other words,
suppose that it is easier to associate the numeral 1 with "first" than
with "singleton," that it is easier to associate the numeral 2 with
"second" than with "pair," that it is easier to associate the numeral_ 3
with "third" than with "trio," and so on. If this happened to be true,
then we would have a possible explanation of the fact that ordinal
number training produces greater correlated improvements in arithmetic
than cardinal number training. The first form of training, after all,
provides a means for acquiring the easier ordinal meanings of numerals,
whereas the latter form of training provides a means for acquiring the
considerably more difficult cardinal meanings of numerals. The experi-
ment whose procedure and findings I shall now summarize was designed to
test this line of reasoning.

The general aims of the experiment were, first, to obtain a sample
of children who did not know the ordinal and cardinal meanings of the
first five numerals and, second, to train the children to acquire these
meanings. The experiment consisted of three sessions. During the first
session, 159 preschoolers (average age = 4 years, 7 month::) were adminis-
tered three types of pretests: (a) numeral identification, (b) ordinal
numeral meaning, and (c) cardinal numeral meaning. On the numeral iden-
tification pretest, the subjects had to recognize the name of the numerals
1, 1, 3, 4, and 5. The ordinal numeral meaning pretest was designed to
determine whether the subjects knew the correct positional meanings of
these same five numerals. Stimuli like the one shown in Figure 12 w re
used on the ordinal numeral meaning pretest. The experimenter would
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point in turn to each of the five symbols in the box at the top of
Figure 12 and ask the subject to select the term in the progression at
the bottom of the figure which went with that particular numeral. The
cardinal numeral meaning pretest was similar in that it was designed
to determine whether the subjects knew the correct manyness meanings
of the first five numerals. Stimuli like the one shown in Figure 13
were used on the cardinal meaning pretest. The experimenter would
point in turn to each of the five symbols in the box at the top of Figure
13 and ask the subject to select the collection at the bottom of the
figure which went with that particular numeral. After the pretests had
been completed, 120 children were selected for the training phase who met
three criteria: they could recognize and name each of the first five
numerals; they did not know the ordinal meanings of these same numerals;
they did not know the ca:uinal meanings of these same numerals.

3 1

5

2 4

Figure 12. An illustrative stimulus used to assess preschoolers'
grasp of the ordinal meanings of the first five numerals.
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Figure 13. An illustrative stimulus used to assess preschoolers'
grasp of the cardinal meanings of the first five numerals.

As was the case in the earlier training experiment, the remaining
120 subjects in this experiment were divided into four groups: ordinal
numeral training, ordinal numeral control, cardinal numeral training,
and cardinal numeral control. During the remainder of the first session,
the subjects in each condition were given 12 training trials. One week
later, during the second session, four more training trials and a series
of posttests were administered. One week after that, during the third
session, the series of posttests was readministered. The 16 training
trials for the ordinal numeral training condition were designed to teach
the children to associate each of the first five numerals with its correct
positional meaning. A series of stimuli like the one in Figure 12 were

presented on each of the training trials, and a simple correction pro-
cedure was instituted. Each time a subject made an incorrect positional
judgment, he or she was corrected; each time a subject made a correct
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positional judgment, a reward was provided. The subjects in the ordi-
nal numeral control condition were administered the same series of
training trials, except that correction was omitted. The subjects in
the cardinal numeral training condition were given 16 training trials
designed to teach them to associate each of the first five numerals
with its correct manyness meaning. A series of stimuli like the one
in Figure 13 were presented on each of the cardinal numeral training
trials, and the same correction procedure used to train the ordinal
meanings of numerals was instituted. The subjects in the cardinal numer-
al control condition were administered the same series of training trials,
except that correction was omitted. After the four training trials given
at the beginning of the second session had been administered, the subjects
in all four conditions received three ordinal meaning posttests and three
cardinal meaning posttests. One week later, all six posttests were
repeated.

The findings of the experiment I have just described generally
tended to show that, consistent with the hypothesis proposed earlier, it
is easier for children to learn the positional meanings of numerals than
it is for them to learn their corresponding manyness meanings. On both
the immediate (second session) and delayed (third session) posttests,
the grasp of positional meaning evidenced by the children in the ordinal
training condition was far better than the grasp of manyness meaning
e.idenced by the children in the cardinal training condition. On the
three ordinal posttests administered during the second session, the
children in the ordinal training condition selected the correct numeral
for a given position 82.9% of the time. When the same ordinal posttests
were administered one week later, the ordinally trained subjects selected
the correct numeral 72.4% of the time. The corresponding percentages
for the cardinally trained subjects were considerably lower. On the
three cardinal posttests administered during the second session, the
children in the cardinal training condition selected the correct numeral
for a given manyness 61.8% of the time. When the same three cardinal,
posttests were administered one week later, the cardinally trained
subjects selected the correct numeral 45.6% of the time. In addition
to being easier to learn in the first place, the data of this experiment
indicated that the ordinal meanings of numerals also are retained better.
Across the one week interval between the immediate and delayed posttests,
the performance of the ordinally trained subjects declined 10.5%. During
the Jame time interval, the performance of the cardinally trained subjects
declined 16.2%. I* turns out that these two rates of long-term retention
are significantly different statistically (2. < .01). The complete results
of this experiment appear in Table 5. Please note that the high possible
value for each cell in this table is 10.00.

The final study which I shall consider (Brainerd, 1975a, chap. 10)
was concerned exclusively with the growth of cardination and other cardi-
nal number ideas during the elementary school years. It will be recalled
that we are defining "cardination" as knowing that the relative manyness
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Table 5

Average Numbers of Correct Numeral Choices for the Four Conditions

Test

Condition

Ordinal
training

Ordinal
control

Cardinal
training

Cardinal
control

Pretests (Ses-
sion 1):

Ordinal 2.23 2.00 2.40 2.47
Cardinal 2.37 2.13 1.83 2.17

Pretests (Ses-
sion 2):

First

Ordinal 8.93 3.47 2.17 2.33
Cardinal 1.93 2.37 6.87 2.27

Second

Ordinal 8.77 3.27 2.23 2.47
Cardinal 1.87 2.13 6.63 2.17

Third

Ordinal 7.17 2.73 2.27 2.43
Cardinal 2.23 2.23 5.03 2.57

Posttests
(Session 3):

First

Ordinal 8.53 2.93 2.27 2.47
Cardinal 2.07 1.83 5.17 2.23

Second

Ordinal 8.07. 2.53 2.33 2.53
Cardinal 2.13 2.23 5.07 2.67

Third

Ordinal 5.13 2.63 2.47 2.17
Cardinal 2.07 2.43 3.33 2.53

Note. For each cell, 10 is the highest possible number of correct
choices.
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of two collections is completely, determined by the type of correspondence
that obtains between them. It will also be recalled that the ordinal
theory predicts a protracted period of emergence for cardinal ideas
spanning at least the middle-childhood years and perhaps continuing on
into adolescence. To test this prediction, we administered the cardina-
tion tests described earlier to 350 children between the ages of five
and 11. A total, of 50 children was selected from each of the grades
kindergarten through six. In addition to cardination tests, these chil-
dren received tests for five other cardinal concepts.

Four of the additional concepts were believed, primarily on logical
grounds, to be necessary preconditions for cardination. These concepts
were class intension, conservation of cardinal equivalence, class exten-
sion, and multiple classification by manyness. Each of these concepts
should be a necessary precondition for cardination because while each of
them is concerned with classes and/or manyness and/or correspondence,
none of them involves underqanding the connection between type of
correspondence and relative danyness as cardination does. Piaget's
familiar object sorting task (Inhelder & Piaget, 1964) was the test
for the class intension concept. Piaget's so-called "number" conserva-
tion problem (Piaget, 1952) was the test for conservation of cardinal
equivalence. The test for class extension was a card sorting task in
which there were eight cards that varied on three binary dimensions,
viz., color (yellow or black), form (square or triangle), and cardinal
number (sextet or octet). The aim was to determine whether the subject
could sort the cards according to relative manyness as well as according
to color and form. The test for multiple classification by manyness
was a variation of Piaget's matrix problem (Inhelder & Piaget, 1964).
The problem consisted of 2 x 2 matrices in which either the rows or the
columns varied in terms of their cardinal number (sextet or octet). In
addition to the four cardinal concepts just described, a fifth concept
was measured which was believed to presuppose a prior understanding of
cardination. This concept was the class inclusion principle. Class
inclusion, like cardination, would seem to presuppose an understanding
of the connection between type of correspondence and relative manyness.
However, whereas cardination involves understanding this connection for
two physically distinct classes, class inclusion involves understanding
it for two classes which are not physically distinct--i.e., a subordinate
class and a superordinate class. Logic suggests that applying one's
knowledge of the correspondence-relative manyness relationship in the
latter situation would be more difficult than in the former situation.

All of the tests just mentioned were administered to each of the
350 subjects participating in the study. As we saw above, a three level
classification scheme already existed for performance on the cardination
tests. To facilitate comparison of children's cardination performance
with their performance on the other tests, identical three-level schemes
were constructed and validated against age for each of the other five
tests. After all of the children had been assigned to one and only one
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of the three levels of each concept, their relative levels of perform-
ance were examined. There were three major findings. First, of all
of the tix concepts studied, only the concept of class intension was
understood by virtually all children at the time they entered elemen-
tary school. The other five concepts tended to evolve gradually through-
out the elementary school age range. Interestingly, the class intension
concept is the only one of the six that has nothing to do with either
manyness or correspondence. Secodd, the concepts emerged in a clear
developmental order. The subjects understood class intension first,
conservation of cardinal equivalence second, class extension third,
multiple classification by manyness fourth, cardination fifth, and class
inclusion sixth. The third finding was the most important of all. The
concepts of cardination and class inclusion, which are the crucial con-
cepts in the study because both presuppose grasping the correspondence-
relative manyness relationship, were never understood by more than a
minority of the children. Even at the oldest age level, 11-years-old,
slightly less than half the subjects clearly understood cardination, and
only about one-third clearly understood class inclusion. The findings
of this study are summarized in Figure 14. In this figure, the findings
are reported by age level of subjects, type of concept, and level of
performance. All the points on each curve are means for given age groups.

The data in Figure 14 obviously are consistent with the protracted
period of cardinal number development posited by the ordinal theory.
Insofar as knowledge of the correspondence-relative manyness relation-
ship, in particular, is concerned, the data indicate that the evolution
of this notion continues into adolescence. Given that this study did
not include adolescents, it is impossible to say precisely when children
may be expected to understand this relationship. However, ome recent
findings by F. H. Hooper and his co-workers at the University of Wis-
consin shed some light on this problem. Hooper has found that the evolu-
tion of the class inclusion principle probably is not complete until the
second half of the high school years.

What the Future Holds

Predicting future research directions in a given content area and
offering recommendations about what sorts of studies investigators
ought to contemplate are hazardous occupations at best. Howevar,
think that the data we have just reviewed entail, some fairly ()bylaus
suggestions about where we should go from here.

The first prediction-recommendation concerns the ordinal and car-
dinal skills of preschoolers. We now possess reasonably extensive
evidence on the sophisticated cognitive counterparts of the logician's
definitions of ordinal and cardinal number in elementary schoolers.
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Class Concept Cross Classification

Cardinal Equivalence Cardination

IIClass Extension Class Inclusion

MINIMUM PERFORMANCE LEVEL

FIVE SIX SEVEN EIGHT NINE TEN ELEVEN

SUBJECTS AGE

Figure 14. Age-related changes in six cardinal number
concepts. N = 50 per age level.
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These data tend to show that, at least during the elementary school
years, ordinal number is developmentally prior to cardinal number, and
ordinal number is more closely connected with the initial emergence of
arithmetic. Importantly, replications of the studies which adduced
these data either have been completed by investigators in other labora-
tories or are now in progress. But what about earlier age levels? In
contrast with our rather extensive findings on elementary schoolers,
we know very little about the preschool precursors of the sophisticated
ordinal and cardinal concepts of middle-childhood. In particular, we
know very little about age-related changes in discriminative ordinality
and discriminative cardinality. The ordinal theory, as we already have
seen, makes clear developmental predictions about these two antecendents
of ordinal and cardinal number, but the data simply are too thin at
present to say whether or not the predictions are correct. It is true
that some studies of discriminative ordinality and discriminative
cardinality are now under way in Linda Siegel's laboratories at McMaster
University and in my own laboratories at the University of Alberta.
However, this research is far from complete. To date, Siegel and I
have studied discriminative ordinality and discriminative cardinality
in the context of only one simple discrimination learning paradigm, viz.,
successive discriminative learning with correction. Clearly, much more
comprehensive work needs to be done with other paradigms--e.g., simul-
taneous discrimination--before we can be certain of our facts. Therefore,
I would like to suggest that, in the short term, we need to focus con-
siderable attention on preschoolers' numerical ideas. We need to know,
first, whether or not the age-related changes in numerical ideas which
take place during the preschool years are consistent with what the
ordinal theory predicts. If the data happened to confirm the predictions,
we would still need to know precisely why the predictions are correct.
Assuming that a plausible explanation could be found, either by appealing
to task variables or to general laws of children's learning or to both,
we would then have to confront the question of whether or not the explana-
tion is consistent with what we know about preschoolers' discrimination
learning in nonnumerical content areas. In brief, we have just scratched
the surface of preschool numerical reasoning, and we need to know a very
great deal more.

My second prediction-recommendation is the most tenuous of the three.
It concerns the preconceptual skills of perceived ordinality and per-
ceived cardinality during infancy. While we know very little about pre-
schoolers' ordinal and cardinal concepts, we know nothing about the assumed
perceptual harbingers of these concepts. As was the case for discriminative
ordinality and discriminative cardinality, the ordinal theory makes
definite developmental predictions about perceived ordinality and per-
ceived cardinality. I know of no extant data which provide the slightest
grounds for supposing these two predictions to be correct. Although
perceived cardinality has occasionally been studied in preschoolers and
elementary schoolers (cf. Nelson & Bartley, 1961, for some examples),
perceived ordinality has never been studied, at least not that I know
of, and, more important, perceived ordinality and perceived cardinality
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never have been compared using infant suojects. To evaluate the predic-
tions of the ordinal theory.vis-h-vis the perceptual roots of ordinal
and cardinal number properly, we shall have to study infants. Of course,
infants are not the easiest of subjects to work with. However, condi-
tioning methods developed by Lipsett (e.g., 1969), Bower (e.g., 1974),
and others are well-suited to the task of examining the ordinal theory's
predictions in infant subjects. Thus, in addition to studying the
immediate precursors of ordinal and cardinal number in preschoolers, I
think we must seriously consider studying their more distant perceptual
antecendents in infants. Our first step might be to use respondent and
operant prJcedures to determine whether there is a developmental lag
between perceived ordinality and perceived cardinality. Another extremely
interesting question--one which mathematicians and philosophers as well
as psychologists would very much like to have answered--that also might
be investigated is when perceived ordinality and perceived cardinality
first appear. There is an old and acrimonious debate among philosophers
of mathematics which Concerns whether or not there is an innate
perceptual subtratum on which the human number concept is built (cf.
Brainerd, 1975a, chap. 1). If it could be shown either that (a)
perceived ordinality and/or perceived cardinality, like size and shape
constancy, are present during the first weeks of life or that (b)
neither appears until much later, then this ancient debate might at
last be resolved.

My third and final prediction-recommendation is rather more down
to earth 'than the two which have preceded it. It concerns the educational
ramifications of the research reviewed in this paper. I have written
at some length of the implications of number development research for
education in chapter 11 ofThe Origins of the Number Concept, and I do
not wish to rehash the arguments appearing therein at this point.
Readers who wish a detailed treatment of the educational questions posed
by number development research are directed to this chapter. Here, I
wish only to note that a serious and sober reassessment of our current
approach to defining arithmetic concepts in the public schools may be
in order. As everyone knows, we have, for about a decade and one-half
now, been emphasizing the meaning of arithmetic concepts as well as drill
in the elementary classrooms of North America. Interestingly, and I
should also say 'unfortunately, the method of teaching the meanings of
arithmetic concepts that currently predominates is a purely cardinal one.
In grade one, we initiate arithmetic instruction with the cardinal
definitions of the first ten numerals. Later on in first-grade and in
subsequent grades, children are taught cardinal definitions of arithmetic
operations and other key concepts. Predicating arithmetic concepts entirely
on cardinal ideas such as manyness, correspondence, etc. obviously pre-
supposes that most children can and do grasp such ideas at an early age.
This assumption is very explicitly stated by authors of books dealing
with the philosophy of the new school mathematics (e.g., Johnson & Rahtz,
1966). But the research does not support the assumption. Quite to the
contrary, if the evidence we have examined tends to show anything, it
shows that cardinal ideas are very difficult for most children (middle-
class children at that) to comprehend. Recall, for example, the normative
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data on the key concepts of cardination and class inclusion in the
last of the studies which.we reviewed. The cardinal definition of numerals,
which we are now teaching to first-graders, involves understanding the
connection between the type of correspondence which obtains between two
classes and the relative manysess of their terms. But the normative
data indicate that this notion is not generally understood until early
adolescence. It is interesting to observe that all of the children who
participated in this normative study.were enrolled in schools employing
cardinally-oriented arithmetic curricula.

Although I am admittedly a neophyte insofar as the rhetoric and
politics of public school education are concerned, honesty and the data
compel me to conclude that is it time to consider eliminating the theory
of classes--or "set theory" as it is usually called in mathematics educa-
tion--from our elementary arithmetic curricula. Our best evidence is
that the definitions of arithmetic concepts which we currently expect
our children to learn are far too difficult, and, consequently, they are
worse than no definitions at all. This is not to say that we must give
up trying to define arithmetic concepts and revert to pure drill. In
place of cardinal definitions, I would strongly urge that we consider
the merits of ordinal definitions. Although the data indicate that
cardinal ideas are very difficult for elementary schoolers, they also
indicate that ordinal ideas are comparatively easy for them. By the time
they enter elementary school, most children appear to grasp all the key
concepts that we would need to use to define numerals, arithmetic opera-
tions, and other concepts ordinally. Therefore, unlike cardinal defi-
nitions, ordinal definitions should not be especially difficult for
children to learn.
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